IBM~ DB2 Universal Database

SQL Reference Volume 2

Version 8

SC09-4845-00

IBM~ DB2 Universal Database

SQL Reference Volume 2

Version 8

SC09-4845-00

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

+ To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order|

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com /planetwide|

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993 - 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book .
Who should use this book .
How this book is structured

A brief overview of Volume 1 .
How to read the syntax diagrams
Common syntax elements

Function designator

Method designator.

Procedure designator.
Conventions used in this manual

Error conditions .

Highlighting conventions
Related documentation .

Chapter 1. Statements .

How SQL statements are invoked .
Embedding a statement in an application
program.

Dynamic preparatlon and executlon
Static invocation of a select-statement .

Dynamic invocation of a select-statement.

Interactive invocation .

SQL use with other host systems

SQL return codes

SQL comments .
ALTER BUFFERPOOL .
ALTER DATABASE PARTITION GROUP .
ALTER FUNCTION
ALTER METHOD .
ALTER NICKNAME .
ALTER PROCEDURE .
ALTER SEQUENCE
ALTER SERVER.
ALTER TABLE .
ALTER TABLESPACE .
ALTER TYPE (Structured)
ALTER USER MAPPING.
ALTER VIEW
ALTER WRAPPER .
BEGIN DECLARE SECTION
CALL.
CLOSE
COMMENT.
COMMIT
Compound SQL (Dynamlc)

© Copyright IBM Corp. 1993 - 2002

. Vii
. vii
. vii
. vil
. viii
. Xi
. xi
. xii
. Xiv
. xvi
. Xvi
. xvi
. xvi

. 101
. 107
. 109
. 120
. 123

Compound SQL (Embedded) .
CONNECT (Type 1) .

CONNECT (Type 2) .

CREATE ALIAS

CREATE BUFFERPOOL.

CREATE DATABASE PARTITION GROUP
CREATE DISTINCT TYPE .

CREATE EVENT MONITOR .

CREATE FUNCTION

CREATE FUNCTION (External Scalar)
CREATE FUNCTION (External Table) .
CREATE FUNCTION (OLE DB External
Table) .

CREATE FUNCTION (Sourced or Template)
CREATE FUNCTION (SQL Scalar, Table or
Row) . .o
CREATE FUNCTION MAPPING
CREATE INDEX . .

CREATE INDEX EXTENSION

CREATE METHOD .

CREATE NICKNAME

CREATE PROCEDURE . .
CREATE PROCEDURE (External)
CREATE PROCEDURE (SQL).

CREATE SCHEMA .

CREATE SEQUENCE

CREATE SERVER.

CREATE TABLE

CREATE TABLESPACE .

CREATE TRANSFORM .

CREATE TRIGGER .

CREATE TYPE (Structured)

CREATE TYPE MAPPING .

CREATE USER MAPPING.

CREATE VIEW

CREATE WRAPPER .

DECLARE CURSOR .

DECLARE GLOBAL TEMPORARY TABLE
DELETE .

DESCRIBE .

DISCONNECT.

DROP.

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

. 130
. 134
. 149
. 151
. 154

158

. 161
. 172
. 188
. 190
. 217

. 235
243

. 254
. 263
. 268
. 277
. 285
. 295
. 296
. 297
. 311
. 318
. 322
. 328
. 332
. 395
. 405
. 414
. 427
. 456
. 461
. 470
. 479
. 482

488

. 497
. 504
. 509
. 512
. 542
. 544
. 552

iii

EXPLAIN

FETCH

FLUSH EVENT MONITOR
FLUSH PACKAGE CACHE

FREE LOCATOR .

GRANT (Database Authorltles)
GRANT (Index Privileges) .
GRANT (Package Privileges) .
GRANT (Routine Privileges) .
GRANT (Schema Privileges) .
GRANT (Sequence Privileges).
GRANT (Server Privileges).
GRANT (Table, View, or Nlckname
Privileges) .

GRANT (Table Space Prlvﬂeges)
INCLUDE .o .
INSERT .

LOCK TABLE .

OPEN.

PREPARE

REFRESH TABLE .

RELEASE (Connection) .
RELEASE SAVEPOINT .
RENAME

RENAME TABLESPACE

REVOKE (Database Authorities) .
REVOKE (Index Privileges)
REVOKE (Package Privileges).
REVOKE (Routine Privileges) .
REVOKE (Schema Privileges) .
REVOKE (Server Privileges) .
REVOKE (Table, View, or Nickname
Privileges) .
REVOKE (Table Space Perlleges)
ROLLBACK. .
SAVEPOINT

SELECT .

SELECT INTO .

SET CONNECTION .

SET CURRENT DEFAULT TRANSFORM

GROUP . .

SET CURRENT DEGREE

SET CURRENT EXPLAIN MODE

SET CURRENT EXPLAIN SNAPSHOT
SET CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION .

SET CURRENT PACKAGESET

SET CURRENT QUERY OPTIMIZATION

SET CURRENT REFRESH AGE .
SET ENCRYPTION PASSWORD .

iv SQL Reference, Volume 2

. 558
. 561
. 565
. 566
. 567
. 569
. 573
. 575
. 579
. 583
. 586
. 588

. 590
. 598
. 601
. 603
. 613
. 615
. 620
. 632
. 634
. 636
. 637
. 640
. 642
. 647
. 650
. 653
. 657
. 660

. 662
. 668
. 671
. 674
. 676
. 677
. 680

. 683
. 685
. 687
. 689

. 691
. 693

695

. 698
. 700

SET EVENT MONITOR STATE
SET INTEGRITY .

SET PASSTHRU

SET PATH .

SET SCHEMA . .
SET SERVER OPTION .
SET Variable

UPDATE.

VALUES .

VALUES INTO.
WHENEVER

Chapter 2. SQL control statements .
About SQL control statements

SQL procedure statement .
ALLOCATE CURSOR statement
Assignment statement

ASSOCIATE LOCATORS statement
CASE statement

Compound statement (Procedure)
FOR statement.

GET DIAGNOSTICS statement
GOTO statement .

IF statement .

ITERATE statement .

LEAVE statement .

LOQOP statement .

REPEAT statement

RESIGNAL statement

RETURN statement .

SIGNAL statement

WHILE statement.

Appendix A. DB2 Universal Database
technical information . .
Overview of DB2 Universal Database
technical information

Categories of DB2 technlcal 1nf0rmat10n
Printing DB2 books from PDF files .
Ordering printed DB2 books .
Accessing online help
Finding topics by accessing the DB2
Information Center from a browser .
Finding product information by accessing
the DB2 Information Center from the
administration tools . .
Viewing technical documentatlon onhne
directly from the DB2 HTML Documentation

. 702
. 704
. 724
. 726
. 729
. 731
. 733
. 738
. 750
. 751
. 753

. 755
. 756
. 757
. 759
. 761
. 762
. 764
. 767
. 775
. 777
. 780
. 782
. 784
. 785
. 787
. 789
. 791
. 794
. 796
. 799

. 801

. 801

802

. 809
. 810
. 810

. 812

. 814

. 815

Updating the HTML documentation installed

on your machine86
Copying files from the DB2 HTML
Documentation CD to a Web Server. . . . 818
Troubleshooting DB2 documentation search
with Netscape 4.x. 818
Searching the DB2 documentat10n 819
Online DB2 troubleshooting information . . 820
Accessibility 821
Keyboard Input and Nav1gat10n ... 821
Accessible Display822
Alternative Alert Cues 822

Compatibility with Assistive Technologles 822

Accessible Documentation .
DB2 tutorials

DB2 Information Center for toplcs .

Appendix B. Notices
Trademarks .

Index

Contacting IBM .
Product information .

. 822
. 822
. 823

. 825
. 828

. 831

. 843
. 843

Contents

A\

vi SQL Reference, Volume 2

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2
Universal Database Version 8, and includes:

* Information about relational database concepts, language elements,
functions, and the forms of queries (Volume 1).

* Information about the syntax and semantics of SQL statements (Volume 2).

Who should use this book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and
database administrators, but it can also be used by those who access
databases through the command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be
writing application programs and therefore presents the full functions of the
database manager.

How this book is structured

A brief

This book contains information about the following major topics:

+ [Chapter 1, “Statements” on page 1| contains syntax diagrams, semantic
descriptions, rules, and examples of all SQL statements.

* [Chapter 2, “SQL control statements” on page 755 contains syntax diagrams,
semantic descriptions, rules, and examples of SQL procedure statements.

overview of Volume 1

The first volume of the SQL Reference contains information about relational
database concepts, language elements, functions, and the forms of queries.
The specific chapters and appendixes in that volume are briefly described
here:

* “Concepts” discusses the basic concepts of relational databases and SQL.

¢ “Language elements” describes the basic syntax of SQL and the language
elements that are common to many SQL statements.

* “Functions” contains syntax diagrams, semantic descriptions, rules, and
usage examples of SQL column and scalar functions.

* “Queries” describes the various forms of a query.
* “SQL limits” lists the SQL limitations.
* “SQL communications area (SQLCA)” describes the SQLCA structure.

© Copyright IBM Corp. 1993 - 2002 vii

A brief overview of Volume 1

* “SQL descriptor area (SQLDA)” describes the SQLDA structure.
* “Catalog views” describes the database catalog views.

* “Federated systems” describes options and type mappings for federated
systems.
* “Sample database tables” describes the sample tables used in examples.

e “Reserved schema names and reserved words” contains the reserved
schema names and the reserved words for the IBM SQL and ISO/ANS
SQL99 standards.

* “Comparison of isolation levels” contains a summary of the isolation levels.

* “Interaction of triggers and constraints” discusses the interaction of triggers
and referential constraints.

* “Explain tables” describes the Explain tables.

* “Explain register values” describes the interaction of the CURRENT
EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special register
values with each other and with the PREP and BIND commands.

* “Recursion example: bill of materials” contains an example of a recursive
query.

* “Exception tables” contains information about user-created tables that are
used with the SET INTEGRITY statement.

e “SQL statements allowed in routines” lists the SQL statements that are
allowed to execute in routines with different SQL data access contexts.

e “CALL” describes the CALL statement that can be invoked from a
compiled statement.

* “Japanese and traditional-Chinese EUC considerations” lists considerations
when using extended UNIX code (EUC) character sets.

* “BNF specifications for DATALINKs” contains the Backus-Naur form (BNF)
specifications for DATALINKSs.

How to read the syntax diagrams

viii

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a syntax diagram.
The — symbol indicates that the syntax is continued on the next line.

The »— symbol indicates that the syntax is continued from the previous line.

SQL Reference, Volume 2

How to read the syntax diagrams
The —>< symbol indicates the end of a syntax diagram.
Syntax fragments start with the |— symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

»>—required_item >

Optional items appear below the main path.

»>—required_item |_0 _| <
ptional_item

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

ptional_item
»>—required_item |—0 —l >

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

»>—required_i tem—[requ ired choicel ><
requi red_z:hoiceZJ

If choosing one of the items is optional, the entire stack appears below the
main path.

»>—required _item >
i:zpt ional_choicel:‘

ptional_choice2

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

|—defau l t_choice—|
»>—required_item ><

i:zpt ional_choice:‘
ptional_choice

About this book 1X

How to read the syntax diagrams

X

An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

»>—required_item——repeatable_item >

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

s

v

»>—required_item repeatable_item ><

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents
the whole syntax fragment that is labeled parameter-block:

»—required_item—' parameter-block i ><

parameter-block:

parameterl I
paramete rZ—Eparame te r:?:lJ
parameterd

Adjacent segments occurring between “large bullets” (@) may be specified in
any sequence.

»>—required_item—iteml—@—item2—@—item3—@—item4 ><

The above diagram shows that item?2 and item3 may be specified in either
order. Both of the following are valid:

SQL Reference, Volume 2

How to read the syntax diagrams

required_item iteml item2 item3 item4
required_item iteml item3 item2 item4

Common syntax elements

The following sections describe a number of syntax fragments that are used in
syntax diagrams. The fragments are referenced as follows:

»—| fragment i ><

Function designator

A function designator uniquely identifies a single function. Function
designators typically appear in DDL statements for functions (such as DROP
or ALTER).

Syntax:

function-designator:

FUNCTION—function-name |_ J |
()

\\(y data—type——)J

SPECIFIC FUNCTION—specific-name

Description:

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one
function instance with the name function-name in the schema. The
identified function can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no function by this name exists in the named
or implied schema, an error (SQLSTATE 42704) is raised. If there is more
than one instance of the function in the named or implied schema, an
error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function.
The function resolution algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an

About this book X1

Function designator

unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE FUNCTION statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, using the name that is
specified or defaulted to at function creation time. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific function instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Method designator

A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

Syntax:

xii SQL Reference, Volume 2

Method designator

method-designator:

ETHOD—method-name |_ J FOR—type—name——|
()

\\(Y data- type——)J

SPECIFIC METHOD—specific-name:

Description:

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name. The
identified method can have any number of parameters defined for it. If no
method by this name exists for the type, an error (SQLSTATE 42704) is
raised. If there is more than one instance of the method for the type, an
error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The number
of data types, and the logical concatenation of the data types, is used
to identify the specific method instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

About this book Xxiii

Method designator

Xiv

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated.
The name must identify a type already described in the catalog
(SQLSTATE 42704). In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The specific-name must identify a specific method instance in
the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Procedure designator

A procedure designator uniquely identifies a single stored procedure.
Procedure designators typically appear in DDL statements for procedures
(such as DROP or ALTER).

Syntax:

procedure-designator:

PROCEDURE—procedure-name |
L) '

\\(Y data- type——)J

SPECIFIC PROCEDURE—specific-name

Description:

PROCEDURE procedure-name

Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The
identified procedure can have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. If no procedure by this name exists in the

SQL Reference, Volume 2

Procedure designator

named or implied schema, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the procedure in the named or implied schema,
an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure. The procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE PROCEDURE statement. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or
DOUBLE.

If no procedure with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or
defaulted to at procedure creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified

About this book XV

Procedure designator

object names. The specific-name must identify a specific procedure instance
in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Conventions used in this manual

This section specifies some conventions which are used consistently
throughout this manual.
Error conditions

An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses. For example:

A duplicate signature raises an SQL error (SQLSTATE 42723).

Highlighting conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:
¢ Names or values (variables) that must be supplied by the user.
* General emphasis.
* The introduction of a new term.

* A reference to another source of information.

Monospace Indicates one of the following:
* Files and directories.

* Information that you are instructed to type at a command prompt or
in a window.

* Examples of specific data values.
* Examples of text similar to what may be displayed by the system.

¢ Examples of system messages.

Related documentation

The following publications may prove useful in preparing applications:
* Administration Guide

— Contains information required to design, implement, and maintain a
database to be accessed either locally or in a client/server environment.

* Application Development Guide

— Discusses the application development process and how to code,
compile, and execute application programs that use embedded SQL and
APIs to access the database.

xvi SQL Reference, Volume 2

Related documentation

DB2 Universal Database for iSeries SQL Reference

— This book defines Structured Query Language (SQL) as supported by
DB2 Query Manager and SQL Development Kit on iSeries (AS/400). It
contains reference information for the tasks of system administration,
database administration, application programming, and operation. This
manual includes syntax, usage notes, keywords, and examples for each
of the SQL statements used on iSeries (AS/400) systems running DB2.

DB2 Universal Database for z/OS and OS/390 SQL Reference

— This book defines Structured Query Language (SQL) used in DB2 for
z/0S (05/390). It provides query forms, SQL statements, SQL procedure
statements, DB2 limits, SQLCA, SQLDA, catalog tables, and SQL
reserved words for z/OS (0S/390) systems running DB2.

DB2 Spatial Extender User’s Guide and Reference

— This book discusses how to write applications to create and use a
geographic information system (GIS). Creating and using a GIS involves
supplying a database with resources and then querying the data to
obtain information such as locations, distances, and distributions within
areas.

IBM SQL Reference

— This book contains all the common elements of SQL that span IBM’s
database products. It provides limits and rules that assist in preparing
portable programs using IBM databases. This manual provides a list of
SQL extensions and incompatibilities among the following standards and
products: SQL92E, XPG4-SQL, IBM-SQL and the IBM relational database
products.

American National Standard X3.135-1992, Database Language SQL
— Contains the ANSI standard definition of SQL.

ISO/IEC 9075:1992, Database Language SQL

— Contains the 1992 ISO standard definition of SQL.

ISO/IEC 9075-2:1999, Database Language SQL -- Part 2: Foundation
(SQL/Foundation)

— Contains a large portion of the 1999 ISO standard definition of SQL.

ISO/IEC 9075-4:1999, Database Language SQL -- Part 4: Persistent Stored

Modules (SQL/PSM)

— Contains the 1999 ISO standard definition for SQL procedure control
statements.

ISO/IEC 9075-5:1999, Database Language SQL -- Part 4: Host Language Bindings

(SQL/Bindings)

— Contains the 1999 ISO standard definition for host language bindings
and dynamic SQL.

About this book XVvii

Related documentation

xviii SQL Reference, Volume 2

Chapter 1. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and

examples of the use of the SQL statements.

Table 1. SQL Statements
SQL Statement

Function

[ALTER BUFFERPOOL| Changes the definition of a buffer pool.

ALTER DATABASH Changes the definition of a database partition group.

PARTITION GROUPl

[ALTER FUNCTION] Modifies an existing function by changing the properties of the
function.

|[ALTER METHOD)| Modifies an existing method by changing the method body
associated with the method.

IALTER NICKNAMEI Changes the definition of a nickname.

[ALTER PROCEDURH Modifies an existing procedure by changing the properties of
the procedure.

[ALTER SEQUENCE| Changes the definition of a sequence.

ALTER SERVE Changes the definition of a data source in a federated system.

ALTER TABLE Changes the definition of a table.

[ALTER TABLESPACH| Changes the definition of a table space.

IALTER TYPE Changes the definition of a structured type.

Structured

;

[ALTER USER MAPPING|

Changes the definition of a user authorization mapping.

ALTER VIEW

Changes the definition of a view by altering a reference type
column to add a scope.

[ALTER WRAPPER|

Updates the options that, along with a wrapper module, are
used to access data sources of a specific type.

BEGIN DECLARE]|
ECTION

Marks the beginning of a host variable declaration section.

AL

Calls a stored procedure.

LOS

Closes a cursor.

P

OMMENT]

Replaces or adds a comment to the description of an object.

OMMIT]

Terminates a unit of work and commits the database changes
made by that unit of work.

=g
—~1=1{[=][= o
EEEE ¢ @ e zoErEE gE m 5 e

Compound SQL
(Dynamic)

Combines one or more other SQL statements into an dynamic
block.

© Copyright IBM Corp. 1993 - 2002

—
N
[63]

p—

Statements

Table 1. SQL Statements (continued)

SQL Statement Function Page
Combines one or more other SQL statements into an executable

Compound SQL|
(Embedded

block.

[CONNECT (Type 1)

Connects to an application server according to the rules for
remote unit of work.

E

|[CONNECT (Type 2) Connects to an application server according to the rules for
application-directed distributed unit of work.

REATE ALIA! Defines an alias for a table, view, or another alias.
[CREATE BUFFERPOOI] = Creates a new buffer pool.
CREATE DATABASE| Defines a database partition group. 158
PARTITION GROUP|
ICREATE DISTINCT] Defines a distinct data type.

TYP Ej

CREATE EVEN
MONITO

Specifies events in the database to monitor.

|[CREATE FUNCTION]|

Registers a user-defined function.

ICREATE FUNCTION]|

(External Scalar !]

Registers a user-defined external scalar function.

ICREATE FUNCTION|

(External Table !I

Registers a user-defined external table function.

ICREATE FUNCTION]|

(OLE DB External Table)|

Registers a user-defined OLE DB external table function.

CREATE FUNCTION|
(Sourced or Template)|

Registers a user-defined sourced function.

O) o
0

CREATE FUNCTION|
(SQL Scalar, Table orf
Row

Registers and defines a user-defined SQL function.

2]

CREATE FUNCTION|

MAPPING|

Defines a function mapping.

E

REATE INDEX]

Defines an index on a table.

o
Q0

CREATE INDE
[EXTENSIO

Defines an extension object for use with indexes on tables with
structured or distinct type columns.

[CREATE METHOD]

Associates a method body with a previously defined method
specification.

[CREATE NICKNAME]|

Defines a nickname.

[CREATE PROCEDURE]

Registers a stored procedure.

(CREATE PROCEDURE]

(External)

2 SQL Reference, Volume 2

Registers an external stored procedure.

EEE & &

Table 1. SQL Statements (continued)

SQL Statement

Function

Statements

=

o
a9

]

CREATE PROCEDURE|
(SQL)

Registers an SQL stored procedure.

=

31

[CREATE SCHEMA|

Defines a schema.

—

|[CREATE SEQUENCE|

Defines a sequence.

[CREATE SERVER]|

Defines a data source to a federated database.

REATE TABL

Defines a table.

[CREATE TABLESPACH

Defines a table space.

[CREATE TRANSFORM|

Defines transformation functions.

[CREATE TRIGGER]|

Defines a trigger.

N P NP Y S RN S
N a1 NI = 2S]O] RN
= D - }| k€31 §1 K611 §1 1’1 {] kes] {1 KiS] 1} Ke's)

unit of work.

CREATE TYP Defines a structured data type.

Structured
ICREATE TYP Defines a mapping between data types.
IMAPPING
CREATE USE Defines a mapping between user authorizations.
IMAPPING

REATE VIE Defines a view of one or more table, view or nickname. 463
[CREATE WRAPPER| Registers a wrapper. 479)
[DECLARE CURSOR| Defines an SQL cursor. 482
DECLARE GLOBAL| Defines the Global Temporary Table. 488
TEMPORARY TABLE|
Deletes one or more rows from a table.
Describes the result columns of a prepared SELECT statement.
DISCONNEC Terminates one or more connections when there is no active

Deletes objects in the database.

END DECLARE
SECTION]

Marks the end of a host variable declaration section.

XECUT

Executes a prepared SQL statement.

[EXECUTE IMMEDIATE|

Prepares and executes an SQL statement.

XPLAIN]| Captures information about the chosen access plan.
FETCH Assigns values of a row to host variables.
FLUSH EVEN Writes out the active internal buffer of an event monitor.
MONITO

sanisdunsanisanied 1| Q1
SIENREIE B
O L=l] Hs NN

FLUSH PACKAGH

0
>
@)
:
jes|

Removes all cached dynamic SQL statements currently in the
package cache.

Chapter 1. Statements

a1
[N
(o))

3

Statements

Table 1. SQL Statements (continued)

S

QL Statement

Function

FREE LOCATO

Removes the association between a locator variable and its
value.

GRANT (Database|

[Authorities)

Grants authorities on the entire database.

g g
[¢°)

GRANT (Inde
Privileges)

7

Grants the CONTROL privilege on indexes in the database.

@)
N
68}

GRANT (Package|

S

rivileges)

Grants privileges on packages in the database.

[9)

RANT (Routind

=J

rivileges)

Grants privileges on a routine (function, method, or procedure).

IGRANT (Schem:
Privileges

|

Grants privileges on a schema.

IGRANT (Sequence]

rivileges

Grants privileges on a sequence.

E & & &

IGRANT (Serve
Privileges

i

Grants privileges to query a specific data source.

.4
[0}
53]

GRANT (Table, View, or]

Nickname Privileges)|

Grants privileges on tables, views and nicknames.

IGRANT (Table Space|

rivileges

Grants privileges on a tablespace.

Z

CLUD

Inserts code or declarations into a source program.

NSERT]

Inserts one or more rows into a table.

OCK TABLE

Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

' 5

Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

Q ONHION O 1
El EIEIEI 2
Gl EIRIE

PREPARE Prepares an SQL statement (with optional parameters) for 620)
execution.

|[REFRESH TABLH Refreshes the data in a materialized query table.

[RELEASE (Connection)) Places one or more connections in the release-pending state.

=]
&
-
i
>
9]
o3
>
<
o
w
Q
Z,
[

Releases a savepoint within a transaction.

RENAME

Renames an existing table.

[RENAME TABLESPACE]

Renames an existing tablespace.

REVOKE (Database|

[Authorities)

Revokes authorities from the entire database.

=

REVOKE (Index
Privileges)

]

SQL Reference, Volume 2

Revokes the CONTROL privilege on given indexes.

B BEEREE

Statements

Table 1. SQL Statements (continued)

SQL Statement Function Page
REVOKE (Package] Revokes privileges from given packages in the database. 650
Privileges)

REVOKE (Routine| Revokes privileges on a routine (function, method, or

Privileges) procedure).

REVOKE (Schema| Revokes privileges on a schema.

Privileges)

z
<
@)
~
s
0
o
=
<
o

Revokes privileges to query a specific data source.

=g
—
=
<
=
o
[0}
2
—

z
<
®)
~
lus
5
o
o
=
5]
=

, Vi 011 Revokes privileges from given tables, views or nicknames.

Z
5
ja¥)
=]
(¢}
)
=,
<
=
]
09
[¢°]
.2 |

[REVOKE (Table Space] Revokes the USE privilege on a given table space.
rivileges

OLLBACK| Terminates a unit of work and backs out the database changes
made by that unit of work.

AVEPOIN Sets a savepoint within a transaction.

ELECT INTO Specifies a result table of no more than one row and assigns
the values to host variables.

[*}) [N 1N o N [oN N N
2 BIRI B BB ENEE
o > [x N [68]

Changes the state of a connection from dormant to current,
making the specified location the current server.

—
(@)
o
Z
Z
==}
@)
=3
o
£]

ET CURREN Changes the value of the CURRENT DEFAULT TRANSFORM 683]
DEFAULT TRANSFORM| GROUP special register.
GROU!j
[SET CURRENT DEGREE]| Changes the value of the CURRENT DEGREE special register.
SET CURRENT] Changes the value of the CURRENT EXPLAIN MODE special
EXPLAIN MODE| register.
SET CURRENT] Changes the value of the CURRENT EXPLAIN SNAPSHOT 689
EXPLAIN SNAPSHOT] special register.
SET CURRENT] Changes the value of the CURRENT MAINTAINED TABLE 691
IMAINTAINED TABLE| TYPES FOR OPTIMIZATION special register.
[TYPES FO
(OPTIMIZATION|
SET CURREN Sets the schema name for package selection.
PACKAGESE
SET CURRENT QUERY| Changes the value of the CURRENT QUERY OPTIMIZATION
OPTIMIZATION| special register.
SET CURRENT] Changes the value of the CURRENT REFRESH AGE special
REFRESH AGE register.
SET ENCRYPTION] Sets the password for encryption. 700]
PASSWORDl

Chapter 1. Statements 5

S

tatements

Table 1. SQL Statements (continued)
SQL Statement

Function

TATE

Activates or deactivates an event monitor.

Sets the check pending state and checks data for constraint
violations.

Opens a session for submitting data source native SQL directly
to the data source.

Changes the value of the CURRENT PATH special register.

Changes the value of the CURRENT SCHEMA special register.

Sets server option settings.

=
<1< << < N (Y
1 o s s O = O
[o'o1 || OS] J1 H=) {1 ANe] §] Ke) I e [¢)

| TR TANT T N | [ATH
es| Il Nes| H Res] §] R=s!] i [es]
e 01]] B ! — HL»—]
< QL=) 5 s
Emg!a%g
sl (3 1= |12
(.W% %Eg
S al 1= |5
= Z
E 2
vl

bl Assigns values to NEW transition variables.
PDATE Updates the values of one or more columns in one or more
rows of a table.
ALUES INTO Specifies a result table of no more than one row and assigns /51
the values to host variables.
HENEVE Defines actions to be taken on the basis of SQL return codes. 753

6

SQL Reference, Volume 2

How SQL statements are invoked

How SQL statements are invoked

SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:
* Embedded in an application program

* Embedded in an SQL procedure.

* Prepared and executed dynamically

¢ Issued interactively

Depending on the statement, some or all of these methods can be used.
(Statements embedded in REXX are prepared and executed dynamically.)

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can
be invoked in three ways. It can be:

* Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH
and CLOSE (static invocation)

* Prepared dynamically, referenced in DECLARE CURSOR, and executed
implicitly by OPEN, FETCH and CLOSE (dynamic invocation)

* Issued interactively

Embedding a statement in an application program

SQL statements can be included in a source program that will be submitted to
a precompiler. Such statements are said to be embedded in the program. An
embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded
by the keywords EXEC SQL.

Executable statements
An executable statement embedded in an application program is executed

every time a statement of the host language would be executed if it were
specified in the same place. Thus, a statement within a loop is executed every
time the loop is executed, and a statement within a conditional construct is
executed only when the condition is satisfied.

An embedded statement can contain references to host variables. A host
variable referenced in this way can be used in two ways. It can be used:

* As input (the current value of the host variable is used in the execution of
the statement)

* As output (the variable is assigned a new value as a result of executing the
statement)

Chapter 1. Statements 7

Executable statements

8

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input.

All executable statements should be followed by a test of the SQL return code.
Alternatively, the WHENEVER statement (which is itself non-executable) can
be used to change the flow of control immediately after the execution of an
embedded statement.

All objects referenced in data manipulation language (DML) statements must
exist when the statements are bound to a database.

Non-executable statements
An embedded non-executable statement is processed only by the precompiler.

The precompiler reports any errors encountered in the statement. The
statement is never processed during program execution; therefore, such
statements should not be followed by a test of the SQL return code.

Embedding a statement in an SQL procedure
Statements can be included in the SQL-procedure-body portion of the

CREATE PROCEDURE statement. Such statements are said to be embedded in
the SQL procedure. Whenever an SQL statement description refers to a
host-variable, an SQL-variable can be used if the statement is embedded in an
SQL procedure.

Dynamic preparation and execution

An application program can dynamically build an SQL statement in the form
of a character string placed in a host variable. In general, the statement is
built from some data available to the program (for example, input from a
workstation). The statement (not a select-statement) constructed can be
prepared for execution by means of the (embedded) PREPARE statement, and
executed by means of the (embedded) EXECUTE statement. Alternatively, an
(embedded) EXECUTE IMMEDIATE statement can be used to prepare and
execute the statement in one step.

A statement that is going to be dynamically prepared must not contain
references to host variables. It can instead contain parameter markers. (For
rules concerning parameter markers, see “PREPARE”.) When the prepared
statement is executed, the parameter markers are effectively replaced by
current values of the host variables specified in the EXECUTE statement. Once
prepared, a statement can be executed several times with different values for
the host variables. Parameter markers are not allowed in the EXECUTE
IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the
setting of an SQL return code in the SQLCA after the EXECUTE (or EXECUTE

SQL Reference, Volume 2

Dynamic preparation and execution

IMMEDIATE) statement completes. The SQL return code should be checked,
as described above. For more information, see|”SQL return codes” on page 10}

Static invocation of a select-statement

A select-statement can be included as a part of the (non-executable)
DECLARE CURSOR statement. Such a statement is executed every time the
cursor is opened by means of the (embedded) OPEN statement. After the
cursor is open, the result table can be retrieved, one row at a time, by
successive executions of the FETCH statement.

Used in this way, the select-statement can contain references to host variables.
These references are effectively replaced by the values that the variables have
when the OPEN statement executes.

Dynamic invocation of a select-statement

An application program can dynamically build a select-statement in the form
of a character string placed in a host variable. In general, the statement is
built from some data available to the program (for example, a query obtained
from a workstation). The statement so constructed can be prepared for
execution by means of the (embedded) PREPARE statement, and referenced
by a (non-executable) DECLARE CURSOR statement. The statement is then
executed every time the cursor is opened by means of the (embedded) OPEN
statement. After the cursor is open, the result table can be retrieved, one row
at a time, by successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host
variables. It can contain parameter markers instead. The parameter markers
are effectively replaced by the values of the host variables specified in the
OPEN statement.

Interactive invocation

A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said
to be issued interactively. Such a statement must be an executable statement
that does not contain parameter markers or references to host variables,
because these make sense only in the context of an application program.

SQL use with other host systems

SQL statement syntax exhibits minor variations among different types of host
systems (DB2 for z/OS, DB2 for iSeries, DB2 Universal Database). Regardless
of whether the SQL statements in an application are static or dynamic, it is
important — if the application is meant to access different database host
systems — to ensure that the SQL statements and precompile/bind options
are supported on the database systems that the application will access.

Chapter 1. Statements 9

SQL use with other host systems

Further information about SQL statements used in other host systems can be
found in the DB2 Universal Database for iSeries SQL Reference and the DB2
Universal Database for OS/390 and z/OS SQL Reference.

SQL return codes

An application program containing executable SQL statements can use either
SQLCODE or SQLSTATE values to handle return codes from SQL statements.
There are two ways in which an application can get access to these values.

* Include a structure named SQLCA. The SQLCA includes an integer variable
named SQLCODE and a character string variable named SQLSTATE. In
REXX, an SQLCA is provided automatically. In other languages, an SQLCA
can be obtained by using the INCLUDE SQLCA statement.

* If LANGLEVEL SQLO92E is specified as a precompile option, a variable
named SQLCODE or SQLSTATE can be declared in the SQL declare section
of the program. If neither of these variables is declared in the SQL declare
section, it is assumed that a variable named SQLCODE is declared
elsewhere in the program. With LANGLEVEL SQL92E, the program should
not have an INCLUDE SQLCA statement.

SQLCODE
An SQLCODE is set by the database manager after each SQL statement

executes. All database managers conform to the ISO/ANSI SQL standard, as

follows:

e If SQLCODE = 0 and SQLWARNO is blank, execution was successful.

* If SQLCODE = 100, “no data” was found. For example, a FETCH statement
returned no data, because the cursor was positioned after the last row of
the result table.

* If SQLCODE > 0 and not = 100, execution was successful with a warning.

e If SQLCODE = 0 and SQLWARNO = 'W', execution was successful, but one
or more warning indicators were set.

e If SQLCODE < 0, execution was not successful.
The meaning of SQLCODE values other than 0 and 100 is product-specific.

SQLSTATE
An SQLSTATE is set by the database manager after each SQL statement

executes. Application programs can check the execution of SQL statements by
testing SQLSTATE instead of SQLCODE. SQLSTATE provides common codes
for common error conditions. Application programs can test for specific errors
or classes of errors. The coding scheme is the same for all IBM database
managers, and is based on the ISO/ANSI SQL92 standard.

SQL comments

Static SQL statements can include host language or SQL comments. SQL
comments are introduced by two hyphens.

10 SQL Reference, Volume 2

SQL comments

The following rules apply to the use of SQL comments:
¢ The two hyphens must be on the same line, not separated by a space.

¢ Comments can be started wherever a space is valid (except within a
delimiter token or between 'EXEC' and 'SQL").

* Comments are terminated by the end of the line.

* Comments are not allowed within statements that are dynamically prepared
(using PREPARE or EXECUTE IMMEDIATE).

¢ In COBOL, the hyphens must be preceded by a space.

Example: This example shows how to include comments in an SQL statement
within a C program:

EXEC SQL
CREATE VIEW PRJ_MAXPER -- projects with most support personnel
AS SELECT PROJNO, PROJNAME -- number and name of project
FROM PROJECT
WHERE DEPTNO = 'E21' -- systems support dept code

AND PRSTAFF > 1;

Related reference:

¢ “Select-statement” in the SQL Reference, Volume 1

["EXECUTE” on page 544|

* ["OPEN” on page 615

["'PREPARE” on page 620

“SQLCA (SQL communications area)” in the SQL Reference, Volume 1
* [‘SQL procedure statement” on page 757

Chapter 1. Statements 11

ALTER BUFFERPOOL

ALTER BUFFERPOOL

12

The ALTER BUFFERPOOL statement is used to do the following:

* modify the size of the buffer pool on all partitions or on a single partition
* turn on or off the use of extended storage

* add this buffer pool definition to a new database partition group

* modify the block area of the buffer pool for block-based I/0.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared
only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax:

»>—ALTER BUFFERPOOL—bufferpool-name >
l—IMMEDIATE

> SIZE—number-of-pages—4——— X >«

|—DEFERRED—| |—DBPARTITIONNUM—db-partition—numberJ
NOT EXTENDED STORAGE
EXTENDED STORAGE4

ADD DATABASE PARTITION GROUP—db-partition-group-name

NUMBLOCKPAGES—number-of-pages

|—B LOCKSI ZE—number—of—pagesJ

BLOCKSIZE—number-of-pages

Description:

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). It must be a buffer pool described in the
catalog.

DBPARTITIONNUM db-partition-number
Specifies the partition on which size of the buffer pool is modified. The
partition must be in one of the database partition groups for the buffer
pool (SQLSTATE 42729). If this clause is not specified, then the size of the
buffer pool is modified on all partitions on which the buffer pool exists
that used the default size for the buffer pool (did not have a size specified
in the except-on-db-partitions-clause of the CREATE BUFFERPOOL
statement).

SQL Reference, Volume 2

ALTER BUFFERPOOL

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.

IMMEDIATE
The bufferpool size will be changed immediately. If there is not
enough reserved space in the database shared memory to allocate new
space (SQLSTATE 01657), the statement is executed as DEFERRED.

DEFERRED
The bufferpool size will be changed when the database is reactivated
(all applications need to be disconnected from the database). Reserved
memory space is not needed; DB2 will allocate the required memory
from the system at activation time.

NOT EXTENDED STORAGE
Even if extended storage is enabled, pages that are being evicted from this
buffer pool are not cached in extended storage.

EXTENDED STORAGE
If extended storage is enabled, it can be used as a secondary cache for
pages that are evicted from the buffer pool. (Extended storage is enabled
by setting the database configuration parameters NUM_ESTORE_SEGS
and ESTORE_SEG_SIZE to non-zero values.)

ADD DATABASE PARTITION GROUP db-partition-group-name
Adds this database partition group to the list of database partition groups
to which the buffer pool definition is applicable. For any partition in the
database partition group that does not already have the bufferpool
defined, the bufferpool is created on the partition using the default size
specified for the bufferpool. Table spaces in db-partition-group-name may
specify this buffer pool. The database partition group must currently exist
in the database (SQLSTATE 42704).

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area.
The number of pages must not be greater than 98 percent of the number
of pages for the buffer pool (SQLSTATE 54052). Specifying the value 0
disables block I/0O. The actual value of NUMBLOCKPAGES used will be a
multiple of BLOCKSIZE.

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM

Chapter 1. Statements 13

ALTER BUFFERPOOL

14

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

Only the buffer pool size can be changed dynamically (immediately). All
other changes are deferred, and will only come into effect after the database
is reactivated.

If the statement is executed as deferred, the following is true: Although the
buffer pool definition is transactional and the changes to the buffer pool
definition will be reflected in the catalog tables on commit, no changes to
the actual buffer pool will take effect until the next time the database is
started. The current attributes of the buffer pool will exist until then, and
there will not be any impact to the buffer pool in the interim. Tables created
in table spaces of new database partition groups will use the default buffer
pool. The statement is IMMEDIATE by default when that keyword applies.

There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements.

A bulffer pool that is currently using extended storage cannot be altered to
use block-based input/output (I/0). A buffer pool cannot be altered to use
both extended storage and block-based 1/0O simultaneously.

SQL Reference, Volume 2

ALTER DATABASE PARTITION GROUP

ALTER DATABASE PARTITION GROUP

The ALTER DATABASE PARTITION GROUP statement is used to:
* add one or more partitions to a database partition group

* drop one or more partitions from a database partition group.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared
only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax:

»»—ALTER DATABASE PARTITION GROUP—db-partiti

WITHOUT TABLESPACES

A4 ADD—EDBPARTITIONNU db-partitions-clause i |
DBPARTITIONNUMS. tLIKE DBPARTITIONNUM—db-partition-number—'

DROP—EDBPARTITIONNU db-partitions-clause i
DBPARTITIONNUMS.

db-partitions-clause:

3

F—(—"db-partition-numberl

|—TO—db—part iti on—numberZ—|

Description:

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). It must be a database partition
group described in the catalog. IBMCATGROUP and IBMTEMPGROUP
cannot be specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific partition or partitions to add to the database
partition group. DBPARTITIONNUMS is a synonym for
DBPARTITIONNUM. Any specified partition must not already be defined
in the database partition group (SQLSTATE 42728).

Chapter 1. Statements 15

ALTER DATABASE PARTITION GROUP

DROP DBPARTITIONNUM

Specifies the specific partition or partitions to drop from the database
partition group. DBPARTITIONNUMS is a synonym for
DBPARTITIONNUM. Any specified partition must already be defined in
the database partition group (SQLSTATE 42729).

db-partitions-clause

Specifies the partition or partitions to be added or dropped.

db-partition-numberl
Specify a specific partition number.

TO db-partition-number2
Specify a range of partition numbers. The value of db-partition-number2
must be greater than or equal to the value of db-partition-numberl
(SQLSTATE 428A9).

LIKE DBPARTITIONNUM db-partition-number

Specifies that the containers for the existing table spaces in the database
partition group will be the same as the containers on the specified
db-partition-number. The partition specified must be a partition that existed
in the database partition group prior to this statement and is not included
in a DROP DBPARTITIONNUM clause of the same statement.

WITHOUT TABLESPACES

Specifies that the default table spaces are not created on the newly added
partition or partitions. The ALTER TABLESPACE statement using the FOR
DBPARTITIONNUM clause must be used to define containers for use
with the table spaces that are defined on this database partition group. If
this option is not specified, the default containers are specified on newly
added partitions for each table space defined on the database partition

group.

Rules:

Each partition specified by number must be defined in the db2nodes.cfg file
(SQLSTATE 42729).

Each db-partition-number listed in the ON DBPARTITIONNUMS clause must
be for a unique partition (SQLSTATE 42728).

A valid partition number is between 0 and 999 inclusive (SQLSTATE 42729).
A partition cannot appear in both the ADD and DROP clauses (SQLSTATE
42728).

There must be at least one partition remaining in the database partition
group. The last partition cannot be dropped from a database partition
group (SQLSTATE 428C0).

If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT
TABLESPACES clause is specified when adding a partition, the default is to
use the lowest partition number of the existing partitions in the database

16 SQL Reference, Volume 2

ALTER DATABASE PARTITION GROUP

partition group (say it is 2) and proceed as if LIKE DBPARTITIONNUM 2
had been specified. For an existing partition to be used as the default it
must have containers defined for all the table spaces in the database
partition group (column IN_USE of SYSCAT.DBPARTITIONGROUPDEEF is
not "T").

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM
- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

* When a partition is added to a database partition group, a catalog entry is
made for the partition (see SYSCAT.DBPARTITIONGROUPDEEF). The
partitioning map is changed immediately to include the new partition along
with an indicator (IN_USE) that the partition is in the partitioning map if
either:

— no table spaces are defined in the database partition group or

— no tables are defined in the table spaces defined in the database partition
group and the WITHOUT TABLESPACES clause was not specified.

The partitioning map is not changed and the indicator (IN_USE) is set to
indicate that the partition is not included in the partitioning map if either:

— tables exist in table spaces in the database partition group or

— table spaces exist in the database partition group and the WITHOUT
TABLESPACES clause was specified.

To change the partitioning map, the REDISTRIBUTE DATABASE
PARTITION GROUP command must be used. This redistributes any data,
changes the partitioning map, and changes the indicator. Table space

containers need to be added before attempting to redistribute data if the
WITHOUT TABLESPACES clause was specified.

* When a partition is dropped from a database partition group, the catalog
entry for the partition (see SYSCAT.DBPARTITIONGROUPDEEF) is updated.
If there are no tables defined in the table spaces defined in the database
partition group, the partitioning map is changed immediately to exclude the
dropped partition and the entry for the partition in the database partition
group is dropped. If tables exist, the partitioning map is not changed and
the indicator (IN_USE) is set to indicate that the partition is waiting to be
dropped. The REDISTRIBUTE DATABASE PARTITION GROUP command
must be used to redistribute the data and drop the entry for the partition
from the database partition group.

Chapter 1. Statements 17

ALTER DATABASE PARTITION GROUP
Example:

Assume that you have a six-partition database that has the following

partitions: 0, 1, 2, 5, 7, and 8. Two partitions are added to the system with

partition numbers 3 and 6.

* Assume that you want to add partitions 3 and 6 to a database partition
group called MAXGROUP and have table space containers like those on
partition 2. The statement is as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

* Assume that you want to drop partition 1 and add partition 6 to database
partition group MEDGROUP. You will define the table space containers
separately for partition 6 using ALTER TABLESPACE. The statement is as
follows:

ALTER DATABASE PARTITION GROUP MEDGROUP
ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

Related concepts:
* “Data partitioning across multiple partitions” in the SQL Reference, Volume 1

18 SQL Reference, Volume 2

ALTER FUNCTION

ALTER FUNCTION

The ALTER FUNCTION statement modifies the properties of an existing
function.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority
¢ ALTERIN privilege on the schema of the function

* Definer of the function, as recorded in the DEFINER column of
SYSCAT.ROUTINES

To alter the EXTERNAL NAME of a function, the privileges held by the
authorization ID of the statement must also include at least one of the
following:

* SYSADM or DBADM authority
¢ CREATE_EXTERNAL_ROUTINE authority on the database

To alter a function to be not fenced, the privileges held by the authorization
ID of the statement must also include at least one of the following;:

* SYSADM or DBADM authority
¢ CREATE_NOT_FENCED_ROUTINE authority on the database

To alter a function to be fenced, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

Chapter 1. Statements 19

ALTER FUNCTION

»»>—ALTER: function-designator ¥ EXTERNAL NAME 'string’ >«
I I _[identifier—l
FENCED
NOT FENCED—|
THREADSAFE

NOT THREADSAFE—|

Description:

function-designator

Uniquely identifies the function to be altered.

EXTERNAL NAME ’string” or identifier

Identifies the name of the user-written code that implements the function.
This option can only be specified when altering external functions
(SQLSTATE 42849).

FENCED or NOT FENCED

Specifies whether the function is considered safe to run in the database
manager operating environment’s process or address space (NOT
FENCED), or not (FENCED). Most functions have the option of running
as FENCED or NOT FENCED.

If a function is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the function.
In general, a function running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2 takes
some precautions against many of the common types of inadvertent
failures that might occur, but cannot guarantee complete integrity when
NOT FENCED user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the function cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or OLEDB functions
(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE

Specifies whether the function is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

SQL Reference, Volume 2

ALTER FUNCTION

If the function is defined with LANGUAGE other than OLE and OLEDB:

* If the function is defined as THREADSAFE, the database manager can
invoke the function in the same process as other routines. In general, to
be threadsafe, a function should not use any global or static data areas.
Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED functions can be
THREADSAFE.

* If the function is defined as NOT THREADSAFE, the database manager
will never invoke the function in the same process as another routine.
Only a fenced function can be NOT THREADSAFE (SQLSTATE 42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions
(SQLSTATE 42849).

Notes:

* It is not possible to alter a function that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

* Functions declared as LANGUAGE SQL, sourced functions, or template
functions cannot be altered (SQLSTATE 42917).

Example:

The function MAIL() has been thoroughly tested. To improve its performance,
alter the function to be not fenced.

ALTER FUNCTION MAIL() NOT FENCED

Related reference:

[‘CREATE FUNCTION (OLE DB External Table)” on page 235|
[‘CREATE FUNCTION (External Scalar)” on page 190}
[‘CREATE FUNCTION (External Table)” on page 217

* [‘Common syntax elements” on page xil

Chapter 1. Statements 21

ALTER METHOD

ALTER METHOD

22

The ALTER METHOD statement modifies an existing method by changing the
method body associated with the method.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

* CREATE_EXTERNAL_ROUTINE authority on the database, and at least one
of:

— ALTERIN privilege on the schema of the type

— Definer of the type, as recorded in the DEFINER column of
SYSCAT.DATATYPES

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»»>—ALTER method-designator EXTERNAL NAME—['string’ ><
I I ident ifierJ

Description:

method-designator
Uniquely identifies the method to be altered.

EXTERNAL NAME ’'string’ or identifier
Identifies the name of the user-written code that implements the method.
This option can only be specified when altering external methods
(SQLSTATE 42849).

Notes:

* It is not possible to alter a method that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

* Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE
42917).

SQL Reference, Volume 2

ALTER METHOD

* The specified method must have a body before it can be altered (SQLSTATE
42704).

Example:

Alter the method DISTANCE() in the structured type ADDRESS_T to use the
library newaddresslib.

ALTER METHOD DISTANCE()
FOR TYPE ADDRESS_T
EXTERNAL NAME 'newaddresslib!distance2’

Related reference:
* ["CREATE METHOD” on page 285]

Chapter 1. Statements 23

ALTER NICKNAME

ALTER NICKNAME

24

The ALTER NICKNAME statement modifies the federated database’s
representation of a data source table or view by:

* Changing the local names of the table’s or view’s columns
* Changing the local data types of these columns

* Adding, changing, or deleting options for these columns
Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following;:

* SYSADM or DBADM authority
* ALTER privilege on the nickname specified in the statement
* CONTROL privilege on the nickname specified in the statement

* ALTERIN privilege on the schema, if the schema name of the nickname
exists

* Definer of the nickname as recorded in the DEFINER column of the catalog
view for the nickname

Syntax:
»>—ALTER NICKNAME—nickname >
COLUMN
> ALTER column-name LOCAL NAME—column-name ><
LOCAL TYPE—data-type—
(1)
federated-column-options |—

federated-column-options:

SQL Reference, Volume 2

ALTER NICKNAME

|_ ADD
F—OPTIONS—(— column-option-name—string-constant) |
SET
DROP—column-option-name

Notes:

1 If the user needs to specify the federated-column-options clause
in addition to the LOCAL NAME parameter, the LOCAL TYPE
parameter, or both, the user must specify the federated-column-options
clause last.

Description:

nickname
Identifies the nickname for the data source table or view that contains the
column specified after the COLUMN keyword. It must be a nickname
described in the catalog.

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server’s
current name for the column of the table or view at the data source. The
column-name must identify an existing column of the data source table or
view referenced by nickname. You cannot reference the same column name
multiple times in the same ALTER NICKNAME statement. Enter all
column options that you want to change under one ALTER COLUMN
parameter, or use separate ALTER NICKNAME statements.

LOCAL NAME column-name
Is the new name by which the federated server is to reference the column
identified by the ALTER COLUMN column-name parameter. This new
name must be a valid DB2 identifier.

LOCAL TYPE data-type
Maps the specified column’s data type to a local data type other than the
one that it maps to now. The new type is denoted by data-type.

The data type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, or a user-defined type.

OPTIONS
Indicates what column options are to be enabled, reset, or dropped for the
column specified after the COLUMN keyword.

ADD
Enables a column option.

SET
Changes the setting of a column option.

Chapter 1. Statements 25

ALTER NICKNAME

26

column-option-name
Names a column option that is to be enabled or reset.

string-constant
Specifies the setting for column-option-name as a character string
constant.

DROP column-option-name
Drops a column option.

Rules:

e If a view, SQL method, or SQL function has been created on a nickname,
the ALTER NICKNAME statement cannot be used to change the local
names or data types for the columns in the table or view that the nickname
references (SQLSTATE 42601). The statement can be used, however, to
enable, reset, or drop column options for these columns.

Notes:

* If ALTER NICKNAME is used to change the local name for a column in a
table or view that a nickname references, queries of the column must
reference it by its new name.

* A column option cannot be specified more than once in the same ALTER
NICKNAME statement (SQLSTATE 42853). When a column option is
enabled, reset, or dropped, any other column options that are in use are not
affected.

* When the local specification of a column’s data type is changed, the
database manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so
on) gathered for that column.

* The ALTER NICKNAME statement cannot be processed within a unit of
work (UOW) if the nickname referenced in this statement is already
referenced by a SELECT statement in the same UOW (SQLSTATE 55007).

Examples:

Example 1: The nickname NICK1 references a DB2 Universal Database for
AS/400 table called T1. Also, COL1 is the local name that references this
table’s first column, C1. Change the local name for C1 to NEWCOL.

ALTER NICKNAME NICK1
ALTER COLUMN COL1
LOCAL NAME NEWCOL

Example 2: The nickname EMPLOYEE references a DB2 Universal Database for
0S/390 table called EMP. Also, SALARY is the local name that references

SQL Reference, Volume 2

ALTER NICKNAME

EMP_SAL, one of this table’s columns. The column’s data type, FLOAT, maps
to the local data type, DOUBLE. Change the mapping so that FLOAT maps to
DECIMAL (10, 5).

ALTER NICKNAME EMPLOYEE
ALTER COLUMN SALARY
LOCAL TYPE DECIMAL(10,5)

Example 3: Indicate that in an Oracle table, a column with the data type of
VARCHAR doesn’t have trailing blanks. The nickname for the table is NICK2,
and the local name for the column is COL1.

ALTER NICKNAME NICK2
ALTER COLUMN COL1
OPTIONS (ADD VARCHAR NO_TRAILING_BLANKS 'Y')

Related reference:
¢ “Column options for federated systems” in the Federated Systems Guide

Chapter 1. Statements 27

ALTER PROCEDURE

ALTER PROCEDURE

28

The ALTER PROCEDURE statement modifies an existing procedure by
changing the properties of the procedure.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority
* ALTERIN privilege on the schema of the procedure

* Definer of the procedure, as recorded in the DEFINER column of
SYSCAT.ROUTINES

To alter the EXTERNAL NAME of a procedure, the privileges held by the
authorization ID of the statement must also include at least one of the
following:

* SYSADM or DBADM authority
* CREATE_EXTERNAL_ROUTINE authority on the database

To alter a procedure to be not fenced, the privileges held by the authorization
ID of the statement must also include at least one of the following;:

* SYSADM or DBADM authority
* CREATE_NOT_FENCED_ROUTINE authority on the database

To alter a procedure to be fenced, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

SQL Reference, Volume 2

ALTER PROCEDURE

»»>—ALTER: procedure-designator Y EXTERNAL NAME 'string’ ><
I I _[identifier—l
FEDERATED RESTRICT—
NOT FEDERATED
FENCED
NOT FENCED—|
THREADSAFE

NOT THREADSAFE—|

Description:

procedure-designator
Uniquely identifies the procedure to be altered.

EXTERNAL NAME ’string” or identifier
Identifies the name of the user-written code that implements the

procedure. This option can only be specified when altering external
procedures (SQLSTATE 42849).

FEDERATED or NOT FEDERATED
Specifies whether or not nicknames can be used.

If FEDERATED is specified, federated objects can be accessed from SQL
statements in the procedure. A FEDERATED procedure that is also
defined with the MODIFIES SQL DATA option cannot be used in a
function, method, or trigger (SQLSTATE 42613). Statements within the
procedure that access federated objects may be subject to special
authorization rules.

If NOT FEDERATED is specified, federated objects cannot be used in any
SQL statement in the procedure. Using a nickname will result in an error
(SQLSTATE 55047).

The FEDERATED option cannot be altered for LANGUAGE OLE
procedures (SQLSTATE 42849).

RESTRICT
The RESTRICT keyword enforces the rule that no object (other than a

package) can be defined that depends on this procedure when altering
the federated attribute (SQLSTATE 42893).

FENCED or NOT FENCED
Specifies whether the procedure is considered safe to run in the database
manager operating environment’s process or address space (NOT
FENCED), or not (FENCED). Most procedures have the option of running
as FENCED or NOT FENCED.

If a procedure is altered to be FENCED, the database manager insulates
its internal resources (for example, data buffers) from access by the

Chapter 1. Statements 29

ALTER PROCEDURE

30

procedure. In general, a procedure running as FENCED will not perform
as well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2 takes
some precautions against many of the common types of inadvertent
failures that might occur, but cannot guarantee complete integrity when
NOT FENCED stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was
defined with the NO SQL option, the procedure cannot be altered to be
FENCED (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures
(SQLSTATE 42849).

This option can only be specified when altering external procedures
(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE

Specifies whether the procedure is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

e If the procedure is defined as THREADSAFE, the database manager can
invoke the procedure in the same process as other routines. In general,
to be threadsafe, a procedure should not use any global or static data
areas. Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED procedures can
be THREADSAFE.

e If the procedure is defined as NOT THREADSAFE, the database
manager will never invoke the procedure in the same process as
another routine. Only a fenced procedure can be NOT THREADSAFE
(SQLSTATE 42613).

This option can only be specified when altering external procedures
(SQLSTATE 42849).

This option may not be altered for LANGUAGE OLE procedures
(SQLSTATE 42849).

Notes:

SQL Reference, Volume 2

ALTER PROCEDURE

* It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

* Procedures declared as LANGUAGE SQL cannot be altered (SQLSTATE
42917).

Example:

Alter the procedure PARTS_ON_HAND() to be not fenced.
ALTER PROCEDURE PARTS ON_HAND() NOT FENCED

Related reference:
. |”CREATE PROCEDURE” on page 296|

Chapter 1. Statements 31

ALTER SEQUENCE

ALTER SEQUENCE

32

The ALTER SEQUENCE statement can be used to change a sequence in any of
these ways:

* Restarting the sequence

* Changing the increment between future sequence values
* Setting or eliminating the minimum or maximum values
* Changing the number of cached sequence numbers

* Changing the attribute that determines whether the sequence can cycle or
not

* Changing whether sequence numbers must be generated in order of request
Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following;:

* Definer of the sequence
* The ALTERIN privilege for the schema implicitly or explicitly specified
* SYSADM or DBADM authority

Syntax:

»»—ALTER SEQUENCE—sequence-name >

SQL Reference, Volume 2

ALTER SEQUENCE

(1)
> RESTART >
|—WITH—numeric—constant—l
—INCREMENT BY—numeric-constant
—[MINVALUE—numeric—constant
NO MINVALUE
—[MAXVALUE—numeric—constant
NO MAXVALUE

CYCLE
—[NO CYCLE—|
—[CACHE—integer—constant

NO CACHE

ORDER
—[NO ORDER—|

Notes:
1 The same clause must not be specified more than once.
Description:

sequence-natme
Identifies the sequence that is to be changed. The name, including the
implicit or explicit schema qualifier, must uniquely identify an existing
sequence at the current server. If no sequence by this name exists in the
explicitly or implicitly specified schema, an error (SQLSTATE 42704) is
returned. sequence-name must not be a sequence generated by the system
for an identity column (SQLSTATE 428FB).

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is
restarted at the value specified implicitly or explicitly as the starting value
on the CREATE SEQUENCE statement that originally created the
sequence.

WITH numeric-constant
Restarts the sequence with the specified value. This value can be any
positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
non-zero digits existing to the right of the decimal point (SQLSTATE
428FA).

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This
value can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE 42815),
and does not exceed the value of a large integer constant (SQLSTATE
42820), without non-zero digits existing to the right of the decimal point
(SQLSTATE 428FA).

Chapter 1. Statements 33

ALTER SEQUENCE

If this value is negative, then this is a descending sequence. If this value is
0 or positive, this is an ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles
or stops generating values, or an ascending sequence cycles to after
reaching the maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value
can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE
42815), without non-zero digits existing to the right of the decimal
point (SQLSTATE 428FA), but the value must be less than or equal to
the maximum value (SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the original starting value. For
a descending sequence, the value is the minimum value of the data
type associated with the sequence.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either
cycles or stops generating values, or a descending sequence cycles to after
reaching the minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value
can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE
42815), without non-zero digits existing to the right of the decimal
point (SQLSTATE 428FA), but the value must be greater than or equal
to the minimum value (SQLSTATE 42815).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type associated with the sequence. For a descending sequence,
the value is the original starting value.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the
sequence can be reached either with the next value landing exactly on the
boundary condition, or by overshooting the value.

CYCLE
Specifies that values continue to be generated for this sequence after
the maximum or minimum value has been reached. If this option is
used, after an ascending sequence reaches its maximum value, it
generates its minimum value; or after a descending sequence reaches

34 SQL Reference, Volume 2

ALTER SEQUENCE

its minimum value, it generates its maximum value. The maximum
and minimum values for the sequence determine the range that is
used for cycling.

When CYCLE is in effect, then duplicate values can be generated by
DB2 for the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are
preallocated and kept in memory. Preallocating and storing values in
the cache reduces synchronous I/0 to the log when values are
generated for the sequence.

In the event of a system failure, all cached sequence values that have
not been used in committed statements are lost (that is, they will
never be used). The value specified for the CACHE option is the
maximum number of sequence values that could be lost in case of
system failure.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE
Specifies that values of the sequence are not to be preallocated. It
ensures that there is not a loss of values in the case of a system
failure, shutdown or database deactivation. When this option is
specified, the values of the sequence are not stored in the cache. In
this case, every request for a new value for the sequence results in
synchronous I/0O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of
request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in
order of request.

Notes:
* Compatibilities

Chapter 1. Statements 35

ALTER SEQUENCE

— For compatibility with previous versions of DB2 and for consistency:
- A comma can be used to separate multiple sequence options.
— The following syntax is also supported:
- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and
NOORDER
* Only future sequence numbers are affected by the ALTER SEQUENCE
statement.
* The data type of a sequence cannot be changed. Instead, drop and recreate
the sequence specifying the desired data type for the new sequence.
* All cached values are lost when a sequence is altered.
 After restarting a sequence or changing to CYCLE, it is possible for
sequence numbers to be duplicate values of ones generated by the sequence
previously.

Examples:

Example 1: A possible reason for specifying RESTART without a numeric value
would be to reset the sequence to the START WITH value. In this example,
the goal is to generate the numbers from 1 up to the number of rows in the
table and then inserting the numbers into a column added to the table using
temporary tables. Another use would be to get results back where all the
resulting rows are numbered:

ALTER SEQUENCE ORG_SEQ RESTART
SELECT NEXTVAL FOR ORG_SEQ, ORG.* FROM ORG

Related samples:

* “DbSeq.java -- How to create, alter and drop a sequence in a database
(JDBC)”

* “DbSeq.out - HOW TO USE A SEQUENCE IN A DATABASE (JDBC)”

36 SQL Reference, Volume 2

ALTER SERVER

ALTER SERVER

The ALTER SERVER statement is used to:

* Modify the definition of a specific data source, or the definition of a
category of data sources.

* Make changes in the configuration of a specific data source, or the
configuration of a category of data sources—changes that will persist over
multiple connections to the federated database.

(In this statement, the word SERVER and the parameter names that start with
server- refer only to data sources in a federated system. They do not refer to
the federated server in such a system, or to DRDA application servers.)

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The authorization ID of the statement must include either SYSADM or
DBADM authority on the federated database.

Syntax:

»>—ALTER SERVER >

»——server-name
—|: I—VERSION—| server-version |J

TYPE—server-type

I—VERSION—| server-version i |
I—WRAPPER—wr‘apper-name—I

>

|_ ADD |
>—0PTIONS—("[H—server-option-name—string-constant) >
SET |
DROP—server-option-name

Chapter 1. Statements 37

ALTER SERVER

38

server-version:

version
[1
L.—releaseﬁ
.—mod-

version-string-constant

Description:

server-name
Identifies the federated server’s name for the data source to which the
changes being requested are to apply. The data source must be one that is
described in the catalog.

VERSION
After server-name, VERSION and its parameter specify a new version of
the data source that server-name denotes.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3").

TYPE server-type
Specifies the type of data source to which the changes being requested are
to apply. The server type must be one that is listed in the catalog.

VERSION
After server-type, VERSION and its parameter specify the version of the
data sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by server-type
and server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the
data source denoted by server-name, or for the category of data sources
denoted by server-type and its associated parameters.

SQL Reference, Volume 2

ALTER SERVER

ADD
Enables a server option.

SET
Changes the setting of a server option.

server-option-name
Names a server option that is to be enabled or reset.

string-constant
Specifies the setting for server-option-name as a character string
constant.

DROP server-option-name
Drops a server option.

Notes:

This statement does not support the DBNAME and NODE server options
(SQLSTATE 428EE).

A server option cannot be specified more than once in the same ALTER
SERVER statement (SQLSTATE 42853). When a server option is enabled,
reset, or dropped, any other server options that are in use are not affected.

An ALTER SERVER statement within a given unit of work (UOW) cannot
be processed under either of the following conditions:

— The statement references a single data source, and the UOW already
includes a SELECT statement that references a nickname for a table or
view within this data source (SQLSTATE 55007).

— The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources (SQLSTATE 55007).

If the server option is set to one value for a type of data source, and set to
another value for an instance of the type, the second value overrides the
first one for the instance. For example, assume that PLAN_HINTS is set to
Y’ for server type ORACLE, and to ‘N’ for an Oracle data source named
DELPHI. This configuration causes plan hints to be enabled at all Oracle
data sources except DELPHI.

Examples:

Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3
data sources, the case of the IDs will remain unchanged. Also, assume that
these data sources have started to run on an upgraded CPU that’s half as fast
as your local CPU. Inform the optimizer of this statistic.

Chapter 1. Statements 39

ALTER SERVER

ALTER SERVER
TYPE ORACLE
VERSION 8.0.3
OPTIONS
(ADD FOLD_ID 'N',
SET CPU_RATIO '2.0')

Example 2: Indicate that a DB2 Universal Database for AS/400 Version 3.0 data
source called SUNDIAL has been upgraded to Version 3.1.

ALTER SERVER SUNDIAL
VERSION 3.1

Related concepts:
» “Distributed relational databases” in the SQL Reference, Volume 1

Related reference:
* “Server options for federated systems” in the Federated Systems Guide

40 SQL Reference, Volume 2

ALTER TABLE

ALTER TABLE

The ALTER TABLE statement modifies existing tables by:

* Adding one or more columns to a table

¢ Adding or dropping a primary key

* Adding or dropping one or more unique or referential constraints

* Adding or dropping one or more check constraint definitions

* Adding or dropping a drop table restriction

¢ Altering the length of a VARCHAR column

* Altering a reference type column to add a scope

 Altering the generation expression of a generated column

* Altering one or more check or referential constraints attributes

* Adding or dropping a partitioning key

* Changing table attributes such as the data capture option, pctfree, lock size,
or append mode.

* Setting the table to not logged initially state.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

¢ ALTER privilege on the table to be altered

¢ CONTROL privilege on the table to be altered
* ALTERIN privilege on the schema of the table
* SYSADM or DBADM authority.

To create or drop a foreign key, the privileges held by the authorization ID of
the statement must include one of the following on the parent table:

* REFERENCES privilege on the table

* REFERENCES privilege on each column of the specified parent key
* CONTROL privilege on the table

* SYSADM or DBADM authority.

Chapter 1. Statements 41

ALTER TABLE

To drop a primary key or unique constraint of table T, the privileges held by
the authorization ID of the statement must include at least one of the
following on every table that is a dependent of this parent key of T:

* ALTER privilege on the table

CONTROL privilege on the table

ALTERIN privilege on the schema of the table
SYSADM or DBADM authority.

To alter a table to become a materialized query table (using a fullselect), the
privileges held by the authorization ID of the statement must include at least
one of the following;:

* CONTROL on the table

* SYSADM or DBADM authority;

and at least one of the following, on each table or view identified in the
fullselect:

* SELECT and ALTER privilege on the table or view

* CONTROL privilege on the table or view

* SELECT privilege on the table or view and ALTERIN privilege on the
schema of the table or view

* SYSADM or DBADM authority.

To alter a table so that it is no longer a materialized query table, the privileges
held by the authorization ID of the statement must include at least one of the
following, on each table or view identified in the fullselect used to define the
materialized query table:

* ALTER privilege on the table or view

* CONTROL privilege on the table or view

* ALTERIN privilege on the schema of the table or view
* SYSADM or DBADM authority

Syntax:

»>—ALTER TABLE—table-name >

42 SQL Reference, Volume 2

ALTER TABLE

l COLUMN
> ADD [1 column-definition ¢

i . | |
unique-constraint

referential-constraint |7
check-constraint (!7
partitioning-key-definition '—

ESTRICT ON DROP.

CHECK

—ALTER—EFOREIGNKi,—constraint-name—| constraint-alteration '—

COLUMN:
—ALTER—I_——I—| column-alteration i

—DROP PRIMARY KEY

FOREIGN KEY——constraint-name—
UNIQUE
CHECK———
CONSTRAINT—
PARTITIONING KEY
RESTRICT ON DROP:
—DATA CAPTURE: NONE:

CHANGES

—ACTIVATE NOT LOGGED INITIALLY

|—I NCLUDE LONGVAR COLUMNSJ

—PCTFREE—integer-

I—WITH EMPTY TABLE—I

—LOCKSIZ E—[RO‘..'
TABLEJ

APPEND—-ON
OFF]

CARDINALITY
[il

—EVOLATI LE
NOT VOLATI LE—I

ACTIVATE—_l—VALUE COMPRESSION
—EDEACTIVATE

'—SET MATERIALIZED QUERY AS—ETEFINITION ONLY-

as-subquery-clause 'J

as-subquery-clause:

|—(—fu11se1ect—)—| materialized-query-table-options

materialized-query-table-options:

ENABLE QUERY OPTIMIZATION—l

l—DATA INITIALLY—DEFERRED—REFRESH—[DEFERRED
IMMEDIATE

column-definition:

—| |—DISABLE QUERY OPTIMIZATION—|

F—column-name
L‘ (1) L‘ column-options ’J

data-type |—

column-options:

Chapter 1. Statements

43

ALTER TABLE

—NOT NULL:

(2)

—| lob-options i
(3)

—| datalink-options i
(4)

—SCOPE—Etyped- table-name2
t‘yped—view-nameé'—I
PRIMARY KEY-

I—CONSTRAINT—constmint‘—nameJ ELUNIQUE_I

references-clause i
HECK—(—Check-candttion—)—‘ constraint-attributes |—

generated-column-spec }
L-COMPRESS SYSTEM DEFAULT

Notes:

1 If the first column-option chosen is the generated-column-spec, then
the data-type can be omitted and computed by the generation-
expression.

2 The lob-options clause only applies to large object types (BLOB, CLOB
and DBCLOB) and distinct types based on large object types.

3 The datalink-options clause only applies to the DATALINK type and
distinct types based on the DATALINK type.

4 The SCOPE clause only applies to the REF type.
lob-options:

LOGGED——— NOT COMPACT—
[[

|—NOT LOGGED- |—COMPACT—

datalink-options:

|—NO LINK CONTROL

|—FILE LINK CONTROL file-Tink-options
MODE DBZOPTIONS—'—I_

—LINKTYPE URL

file-link-options:

|—.—INTEGRITY—ALL—.—READ PERMISSION—[FS >
DB
>—@-WRITE PERMISSION FS >
EBLOCKED
ADMIN—L—_I—REQUIRING TOKEN FOR UPDATE-
NOT

44 SQL Reference, Volume 2

ALTER TABLE

»‘—RECOVERY—[N()—J—‘—ON UNLINK RESTORE]—‘ I
YES DELETE

references-clause:

|—REFERENCES—table-name >

(—X—column-name——)

>—| rule-clause '—I constraint-attributes i I

rule-clause:

|—ON DELETE NO ACTION
|—ON DELETE——RESTRICT
ECASCADE{F
SET NULL
generated-column-spec:

}—q default-clause }] I
ENERATED ALWAYS AS—(—generution—expression—)

N UPDATE NO ACTION
® |—0 N ®
] |
Lon upoate ResTRICT

e

default-clause:

WITH
I—I_——I—DEFAULT |

constant
atetime-special-register
CURRENT SCHEMA
USER
NULL
ast-function—(constant)—
datetime-special-register—
CURRENT SCHEMA
USER

unique-constraint:

| B] LUNIQUE (—Y—column-name) |
CONSTRAINT—constraint-name PRIMARY KEY-

Chapter 1. Statements 45

ALTER TABLE

46

referential-constraint:

| FOREIGN KEY—(—"—column-name——)

|—CONSTRAINT—consztrcrint-name—|

>—| references-clause i

check-constraint:

| CHECK— (—check-condition—)

|—CONSTRAINT—(:onstraint-name—|

>—| constraint-attributes i

constraint-attributes:

ENFORCED ENABLE QUERY OPTIMIZATION
[o]

|—NOT ENFORCED— |—DISABLE QUERY OPTIMIZATIONJ

partitioning-key-definition:

)

USING HASHING
[1

F—PARTITIONING KEY—(—Y—column-name)

column-alteration:

CHARACTER VARYING—

l—CoZumn-name——SET DATA TYPE |:VARCHAR
CHAR VARYING

INLINE LENGTH—integer

(—integer—)

EXPRESSION AS—(—generation-expression—)——

—ADD SCOPE—[typed- table-name
t‘yped—view—name—I

—COMPRESS—[SYSTEM DEFAULT
OFF

—| identity-alteration i

identity-alteration:

SQL Reference, Volume 2

(1)

SET INCREMENT BY—numeric-constant

ALTER TABLE

—SET—[NO MINVALUE _|
MINVALUE—numeric-constant

—SET—[NO MAXVALUE
MAXVALUE—numeric-constan t—l

—SET NO CYCLE
—[CYCLEJ

—SET—[NO CACHE
CACHE—integer-cons t‘cmt—I

—SET NO ORDER
_[ORDER—l

—RESTART |_ _|
WITH—numeric-constant

constraint-alteration:

LENABLEJ QUERY OPTIMIZATION
DISABLE

Notes:

table-name

ENFORCED
|—NOT—|

The same clause must not be specified more than once.

Description:

Identifies the table to be changed. It must be a table described in the
catalog and must not be a view or a catalog table. If table-name identifies a
materialized query table, alterations are limited to setting the materialized
query table to definition only, activating not logged initially, changing
pctfree, locksize, append, or volatile. The table-name cannot be a nickname
(SQLSTATE 42809) or a declared temporary table (SQLSTATE 42995).

SET MATERIALIZED QUERY AS

Allows alteration of the properties of a materialized query table.
DEFINITION ONLY

Change a materialized query table so that it is no longer considered a
materialized query table. The table specified by table-name must be
defined as a materialized query table that is not replicated (SQLSTATE
428EW). The definition of the columns of table-name is not changed
but the table can no longer be used for query optimization and the
REFRESH TABLE statement can no longer be used.

Chapter 1. Statements 47

ALTER TABLE

48

as-subquery-clause
Changes a regular table to a materialized query table for use during
query optimization. The table specified by table-name must not:
* be previously defined as a materialized query table
* be a typed table
* have any constraints, unique indexes, or triggers defined

* be referenced in the definition of another materialized query table.

If table-name does not meet these criteria, an error is returned
(SQLSTATE 428EW).

fullselect
Defines the query in which the table is based. The columns of the
existing table must:
* have the same number of columns
* have exactly the same data types

* have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details
about specifying the fullselect for a materialized query table, see
“CREATE TABLE”. One additional restriction is that fable-name
cannot be directly or indirectly referenced in the fullselect.

materialized-query-table-options
Specifies the refreshable options for altering a materialized query
table.

DATA INITIALLY DEFERRED
The data in the table must be validated using the REFRESH
TABLE or SET INTEGRITY statement.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using
the REFRESH TABLE statement. The data in the table only
reflects the result of the query as a snapshot at the time
the REFRESH TABLE statement is processed. Materialized
query tables defined with this attribute do not allow
INSERT, UPDATE, or DELETE statements (SQLSTATE
42807).

IMMEDIATE
The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the
materialized query table. In this case, the content of the
table, at any point-in-time, is the same as if the specified

SQL Reference, Volume 2

ALTER TABLE

subselect is processed. Materialized query tables defined
with this attribute do not allow INSERT, UPDATE, or
DELETE statements (SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query
optimization.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query
optimization. The table can still be queried directly.

ADD column-definition
Adds a column to the table. The table must not be a typed table
(SQLSTATE 428DH). For all existing rows in the table, the value of the
new column is set to its default value. The new column is the last column
of the table; that is, if initially there are n columns, the added column is
column n+1.

Adding the new column must not make the total byte count of all
columns exceed the maximum record size.

column-name
Is the name of the column to be added to the table. The name cannot
be qualified. Existing column names in the table cannot be used
(SQLSTATE 42711).

data-type
Is one of the data types listed under “CREATE TABLE".

NOT NULL
Prevents the column from containing null values. The default-clause
must also be specified (SQLSTATE 42601).

lob-options
Specifies options for LOB data types. See lob-options in “CREATE
TABLE”.

datalink-options
Specifies options for DATALINK data types. See datalink-options in
“CREATE TABLE”.

SCOPE
Specify a scope for a reference type column.

typed-table-name?2
The name of a typed table. The data type of column-name must be
REE(S), where S is the type of typed-table-name2 (SQLSTATE
428DM). No checking is done of the default value for column-name
to ensure that the value actually references an existing row in
typed-table-name2.

Chapter 1. Statements 49

ALTER TABLE

typed-view-name2
The name of a typed view. The data type of column-name must be
REFE(S), where S is the type of typed-view-name2 (SQLSTATE
428DM). No checking is done of the default value for column-name
to ensure that the values actually references an existing row in
typed-view-name?2.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint
that was already specified within the same ALTER TABLE statement,
or as the name of any other existing constraint on the table
(SQLSTATE 42710).

If the constraint name is not specified by the user, an 18-character
identifier unique within the identifiers of the existing constraints
defined on the table is generated by the system. (The identifier
consists of "SQL" followed by a sequence of 15 numeric characters
that are generated by a timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is created to
support the constraint. See [“Notes” on page 67| for details on index
names associated with unique constraints.

PRIMARY KEY

This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in
the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause were specified as a separate clause. The column cannot
contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

See PRIMARY KEY within the description of the unique-constraint
below.

UNIQUE

This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause were
specified as a separate clause.

See UNIQUE within the description of the unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

50 SQL Reference, Volume 2

ALTER TABLE

See references-clause in “CREATE TABLE”.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that
applies to a single column. See check-condition in “CREATE TABLE”.

generated-column-spec

For details on column-generation, see “CREATE TABLE”.

default-clause

Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the
column as shown in If a column is defined as a
DATALINK or structured type, then a DEFAULT clause cannot be

specified.

If a column is defined using a distinct type, then the default value
of the column is the default value of the source data type cast to

the distinct type.

Table 2. Default Values (when no value specified)

Data Type Default Value
Numeric 0
Fixed-length character string Blanks

Varying-length character string

A string of length 0

Fixed-length graphic string

Double-byte blanks

Varying-length graphic string

A string of length 0

Date

For existing rows, a date corresponding to
January 1, 0001. For added rows, the
current date.

Time For existing rows, a time corresponding to
0 hours, 0 minutes, and 0 seconds. For
added rows, the current time.

Timestamp For existing rows, a date corresponding to

January 1, 0001, and a time corresponding
to 0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Chapter 1. Statements 51

ALTER TABLE

52

Table 2. Default Values (when no value specified) (continued)

Data Type

Default Value

Binary string (blob) A string of length 0

SQL Reference, Volume 2

Omission of DEFAULT from a column-definition results in the use
of the null value as the default for the column.

Specific types of values that can be specified with the DEFAULT
keyword are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:

* represent a value that could be assigned to the column in
accordance with the rules of assignment as described in
Chapter 3

* not be a floating-point constant unless the column is
defined with a floating-point data type

* not have non-zero digits beyond the scale of the column
data type if the constant is a decimal constant (for example,
1.234 cannot be the default for a DECIMAL(5,2) column)

* be expressed with no more than 254 characters including
the quote characters, any introducer character such as the X
for a hexadecimal constant, and characters from the fully
qualified function name and parentheses when the constant
is the argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the
time of INSERT, UPDATE, or LOAD as the default for the
column. The data type of the column must be the data type
that corresponds to the special register specified (for example,
data type must be DATE when CURRENT DATE is specified).
For existing rows, the value is the current date, current time
or current timestamp when the ALTER TABLE statement is
processed.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register
at the time of INSERT, UPDATE, or LOAD as the default for
the column. If CURRENT SCHEMA is specified, the data type
of the column must be a character string with a length greater
than or equal to the length attribute of the CURRENT

ALTER TABLE

SCHEMA special register. For existing rows, the value of the
CURRENT SCHEMA special register at the time the ALTER
TABLE statement is processed.

USER
Specifies the value of the USER special register at the time of
INSERT, UPDATE, or LOAD as the default for the column. If
USER is specified, the data type of the column must be a
character string with a length not less than the length attribute
of USER. For existing rows, the value is the authorization ID
of the ALTER TABLE statement.

NULL
Specifies NULL as the default for the column. If NOT NULL
was specified, DEFAULT NULL must not be specified within
the same column definition.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception
of distinct types based on BLOB or datetime types, the name
of the function must match the name of the distinct type for
the column. If qualified with a schema name, it must be the
same as the schema name for the distinct type. If not
qualified, the schema name from function resolution must be
the same as the schema name for the distinct type. For a
distinct type based on a datetime type, where the default
value is a constant, a function must be used and the name of
the function must match the name of the source type of the
distinct type with an implicit or explicit schema name of
SYSIBM. For other datetime columns, the corresponding
datetime function may also be used. For a BLOB or a distinct
type based on BLOB, a function must be used and the name
of the function must be BLOB with an implicit or explicit
schema name of SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of
the distinct type or for the data type if not a distinct type.
If the cast-function is BLOB, the constant must be a string
constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP. The source type of the distinct

Chapter 1. Statements 53

ALTER TABLE

type of the column must be the data type that
corresponds to the specified special register.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special
register. The data type of the source type of the distinct
type of the column must be a character string with a
length greater than or equal to the length attribute of the
CURRENT SCHEMA special register. If the cast-function is
BLOB, the length attribute must be at least 8 bytes.

USER
Specifies the USER special register. The data type of the
source type of the distinct type of the column must be a
string data type with a length of at least 8 bytes. If the
cast-function is BLOB, the length attribute must be at least
8 bytes.

If the value specified is not valid, an error (SQLSTATE 42894) is
raised.

COMPRESS SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for
the data types when no specific values are specified) are to be stored
using minimal space. If the VALUE COMPRESSION clause is not
specified, a warning is returned (SQLSTATE 01648) and system default
values are not stored using minimal space.

Allowing system default values to be stored in this manner causes a slight
performance penalty during insert and update operations on the column
because of extra checking that is done.

The base data type must not be DATE, TIME, or TIMESTAMP (SQLSTATE
42842). If the base data type is a varying-length string, this clause is
ignored. String values of length 0 are automatically compressed if a table
has been set with VALUE COMPRESSION.

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique
constraint cannot be added to a table that is a subtable (SQLSTATE
429B3). If the table is a supertable at the top of the hierarchy, the
constraint applies to the table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For more information,
see constraint-name in “CREATE TABLE”.

UNIQUE (column-name...,)
Defines a unique key composed of the identified columns. The
identified columns must be defined as NOT NULL. Each column-name

54 SQL Reference, Volume 2

ALTER TABLE

must identify a column of the table and the same column must not be
identified more than once. The name cannot be qualified. The number
of identified columns must not exceed 16, and the sum of their stored
lengths must not exceed 1024. No LOB, LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, distinct type based on any of these types,
or structured type may be used as part of a unique key, even if the
length attribute of the column is small enough to fit within the
1024-byte limit (SQLSTATE 54008). The set of columns in the unique
key cannot be the same as the set of columns of the primary key or
another unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or
MIA, an error is returned, SQLSTATE 42891.) Any existing values in
the set of identified columns must be unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the
unique key definition (ignoring any INCLUDE columns in the index).
An index definition matches if it identifies the same set of columns
without regard to the order of the columns or the direction
(ASC/DESC) specifications. If a matching index definition is found,
the description of the index is changed to indicate that it is required
by the system and it is changed to unique (after ensuring uniqueness)
if it was a non-unique index. If the table has more than one matching
index, an existing unique index is selected (the selection is arbitrary).
If no matching index is found, a unique index will automatically be
created for the columns, as described in CREATE TABLE. See
for details on index names associated with unique
constraints.

PRIMARY KEY ...(column-name,)
Defines a primary key composed of the identified columns. Each
column-name must identify a column of the table, and the same
column must not be identified more than once. The name cannot be
qualified. The number of identified columns must not exceed 16 and
the sum of their stored lengths must not exceed 1024. The table must
not have a primary key and the identified columns must be defined
as NOT NULL. No LOB, LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, distinct type based on any of these types, or structured
type may be used as part of a primary key, even if the length attribute
of the column is small enough to fit within the 1024-byte limit
(SQLSTATE 54008). The set of columns in the primary key cannot be
the same as the set of columns in a unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE
42891.) Any existing values in the set of identified columns must be
unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the
primary key definition (ignoring any INCLUDE columns in the
index). An index definition matches if it identifies the same set of

Chapter 1. Statements 55

ALTER TABLE

columns without regard to the order of the columns or the direction
(ASC/DESC) specifications. If a matching index definition is found,
the description of the index is changed to indicate that it is the
primary index, as required by the system, and it is changed to unique
(after ensuring uniqueness) if it was a non-unique index. If the table
has more than one matching index, an existing unique index is
selected (the selection is arbitrary). If no matching index is found, a
unique index will automatically be created for the columns, as
described in CREATE TABLE. See ["Notes” on page 67 for details on
index names associated with unique constraints.

Only one primary key can be defined on a table.

ADD referential-constraint
Defines a referential constraint. See referential-constraint in “CREATE
TABLE”.

ADD check-constraint
Defines a check constraint. See check-constraint in “CREATE TABLE”.

ADD partitioning-key-definition
Defines a partitioning key. The table must be defined in a table space on a
single-partition database partition group and must not already have a
partitioning key. If a partitioning key already exists for the table, the
existing key must be dropped before adding the new partitioning key.

A partitioning key cannot be added to a table that is a subtable
(SQLSTATE 428DH).

PARTITIONING KEY (column-name...)
Defines a partitioning key using the specified columns. Each
column-name must identify a column of the table, and the same
column must not be identified more than once. The name cannot be
qualified. A column cannot be used as part of a partitioning key if the
data type of the column is a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on
any of these types, or structured type.

USING HASHING
Specifies the use of the hashing function as the partitioning method
for data distribution. This is the only partitioning method supported.

ADD RESTRICT ON DROP
Specifies that the table cannot be dropped, and that the table space that
contains the table cannot be dropped.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name.
The constraint-name must identify an existing referential constraint
(SQLSTATE 42704).

56 SQL Reference, Volume 2

ALTER TABLE

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint constraint-name. The

constraint-name must identify an existing referential constraint (SQLSTATE
42704).

constraint-alteration
Options for changing attributes associated with referential or check
constraints.

ENFORCED
Change the constraint to ENFORCED. The constraint is enforced by
the database manager during normal operations, such as insert,
update, or delete.

NOT ENFORCED
Change the constraint to NOT ENFORCED. The constraint is not
enforced by the database manager during normal operations, such as
insert, update, or delete. This should only be specified if the table data
is independently known to conform to the constraint.

ENABLE QUERY OPTIMIZATION
The constraint can be used for query optimization under appropriate
circumstances.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

ALTER column-alteration
Alters the characteristics of a column.

column-name
Is the name of the column to be altered in the table. The column-name
must identify an existing column of the table (SQLSTATE 42703). The
name cannot be qualified.

SET DATA TYPE VARCHAR (integer)
Increases the length of an existing VARCHAR column. CHARACTER
VARYING or CHAR VARYING can be used as synonyms for the
VARCHAR keyword. The data type of column-name must be
VARCHAR and the current maximum length defined for the column
must not be greater than the value for integer (SQLSTATE 42837). The
value for integer can range up to 32 672. The table must not be a typed
table (SQLSTATE 428DH).

Altering the column must not make the total byte count of all
columns exceed the maximum record size (SQLSTATE 54010). If the
column is used in a unique constraint or an index, the new length
must not cause the sum of the stored lengths for the unique constraint
or index to exceed 1024 (SQLSTATE 54008).

Chapter 1. Statements 57

ALTER TABLE

The length of variable length columns that are part of any index,
including primary and unique keys, defined when the registry
variable DB2_INDEX_2BYTEVARLEN was set to ON, can be altered
to a length greater than 255 bytes. The fact that a variable length
column is involved in a foreign key does not prevent the length of
that column from being altered to larger than 255 bytes, regardless of
the registry variable setting. However, data with length greater than
255 cannot be inserted into the table unless the column in the
corresponding primary key has length greater than 255 bytes, which is
only possible if the primary key was created with the registry variable
set to ON.

SET EXPRESSION AS (generation-expression)

Changes the expression for the column to the specified
generation-expression. SET EXPRESSION AS requires the table to be put
in check pending state, using the SET INTEGRITY statement. After the
ALTER TABLE statement, the SET INTEGRITY statement must be
used to update and check all the values in that column against the
new expression. The column must already be defined as a generated
column based on an expression (SQLSTATE 42837), and must not
have appeared in the DIMENSIONS clause of the table (SQLSTATE
42997). The generation-expression must conform to the same rules that
apply when defining a generated column. The result data type of the
generation-expression must be assignable to the data type of the
column (SQLSTATE 42821).

SET INLINE LENGTH integer

Changes the inline length of an existing structured type column. The
inline length indicates the maximum byte size of an instance of a
structured type to store inline with the rest of the values in the row.
Instances of structured types that cannot be stored inline are stored
separately from the base table row, similar to the way that LOB values
are handled.

The data type of column-name must be a structured type (SQLSTATE
42842).

The default inline length for a structured-type column is the inline
length of its type (specified explicitly or by default in the CREATE
TYPE statement). If the inline length of a structured type is less than
292, the value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE -1);
must be at least 292; and cannot exceed 32672 (SQLSTATE 54010).

Altering the column must not make the total byte count of all
columns exceed the maximum record size (SQLSTATE 54010).

58 SQL Reference, Volume 2

ALTER TABLE

Data that is already stored separately from the rest of the row will not
be moved inline by this statement. To take advantage of the altered
inline length of a structured type column, invoke the REORG
command against the specified table after altering the inline length of
its column.

ADD SCOPE
Add a scope to an existing reference type column that does not
already have a scope defined (SQLSTATE 428DK). If the table being
altered is a typed table, the column must not be inherited from a
supertable (SQLSTATE 428D]J).

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE
428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing
rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE
428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing
rows in typed-view-name.

COMPRESS
Specifies whether or not default values for this column are to be
stored more efficiently.

SYSTEM DEFAULT
Specifies that system default values (that is, the default values
used for the data types when no specific values are specified) are
to be stored using minimal space. If the table is not already set
with the VALUE COMPRESSION attribute activated, a warning is
returned (SQLSTATE 01648), and system default values are not
stored using minimal space.

Allowing system default values to be stored in this manner causes
a slight performance penalty during insert and update operations
on the column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table
reorganization to enable existing data to take advantage of storing
system default values using minimal space.

OFF
Specifies that system default values are to be stored in the column
as regular values. Existing data in the column is not changed.
Offline reorganization is recommended to change existing data.

Chapter 1. Statements 59

ALTER TABLE

The base data type must not be DATE, TIME or TIMESTAMP
(SQLSTATE 42842). If the base data type is a varying-length string,
this clause is ignored. String values of length 0 are automatically
compressed if a table has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be
inherited from a supertable (SQLSTATE 428D]).

SET INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The next value to be generated for the identity column will
be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY
attribute (SQLSTATE 42837).

This value can be any positive or negative value that could be
assigned to this column (SQLSTATE 42815), and does not exceed the
value of a large integer constant (SQLSTATE 42820), without non-zero
digits existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence after the
ALTER statement. If this value is 0 or positive, this is an ascending
sequence after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant
Specifies the minimum value at which a descending identity column
either cycles or stops generating values, or the value to which an
ascending identity column cycles after reaching the maximum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MINVALUE
For an ascending sequence, the value is the original starting value.
For a descending sequence, the value is the minimum value of the
data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815, SQLCODE -846), without
non-zero digits existing to the right of the decimal point
(SQLSTATE 428FA, SQLCODE -336), but the value must be less
than or equal to the maximum value (SQLSTATE 42815,
SQLCODE -846).

SET NO MAXVALUE or MAXVALUE numeric-constant
Specifies the maximum value at which an ascending identity column
either cycles or stops generating values, or the value to which a

60 SQL Reference, Volume 2

ALTER TABLE

descending identity column cycles after reaching the minimum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type of the column. For a descending sequence, the value is
the original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without non-zero digits
existing to the right of the decimal point (SQLSTATE 428FA), but
the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

SET NO CYCLE or CYCLE
Specifies whether this identity column should continue to generate
values after generating either its maximum or minimum value. The
column must exist in the specified table (SQLSTATE 42703), and must
already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE
Specifies that values will not be generated for the identity column
once the maximum or minimum value has been reached.

CYCLE
Specifies that values continue to be generated for this column
after the maximum or minimum value has been reached. If this
option is used, then after an ascending identity column reaches
the maximum value, it generates its minimum value; or after a
descending sequence reaches the minimum value, it generates its
maximum value. The maximum and minimum values for the
identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for an
identity column. Although not required, if unique values are
desired, a single-column unique index defined using the identity
column will ensure uniqueness. If a unique index exists on such
an identity column and a non-unique value is generated, an error
occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant
Specifies whether to keep some pre-allocated values in memory for
faster access. This is a performance and tuning option. The column
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

Chapter 1. Statements 61

ALTER TABLE

62 SQL Reference, Volume 2

NO CACHE

Specifies that values for the identity column are not to be
pre-allocated. In a data sharing environment, if the identity values
must be generated in order of request, the NO CACHE option
must be used.

When this option is specified, the values of the identity column
are not stored in the cache. In this case, every request for a new
identity value results in synchronous I/O to the log.

CACHE integer-constant

Specifies how many values of the identity sequence are
pre-allocated and kept in memory. When values are generated for
the identity column, pre-allocating and storing values in the cache
reduces synchronous I/0O to the log.

If a new value is needed for the identity column and there are no
unused values available in the cache, the allocation of the value
requires waiting for I/O to the log. However, when a new value is
needed for the identity column and there is an unused value in
the cache, the allocation of that identity value can happen more
quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to
a system failure, all cached sequence values that have not been
used in committed statements are lost (that is, they will never be
used). The value specified for the CACHE option is the maximum
number of values for the identity column that could be lost in
case of system failure.

The minimum value is 2 (SQLSTATE 42815).

SET NO ORDER or ORDER
Specifies whether the identity column values must be generated in
order of request. The column must exist in the specified table
(SQLSTATE 42703), and must already be defined with the IDENTITY
attribute (SQLSTATE 42837).

NO ORDER

Specifies that the identity column values do not need to be
generated in order of request.

ORDER

Specifies that the identity column values must be generated in
order of request.

RESTART or RESTART WITH numeric-constant
Resets the state of the sequence associated with the identity column. If
WITH numeric-constant is not specified, the sequence for the identity

ALTER TABLE

column is restarted at the value that was specified, either implicitly or
explicitly, as the starting value when the identity column was
originally created.

The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any
positive or negative value that could be assigned to this column
(SQLSTATE 42815), without non-zero digits existing to the right of the
decimal point (SQLSTATE 428FA). The numeric-constant will be used
as the next value for the column.

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints
dependent on this primary key. The table must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint. For information on implications of
dropping a referential constraint see [“Notes” on page 67}

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all
referential constraints dependent on this unique constraint. The
constraint-name must identify an existing UNIQUE constraint. For
information on implications of dropping a unique constraint, see
_Mm page 67|

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must
identify an existing check constraint defined on the table.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key or unique
constraint defined on the table. For information on implications of
dropping a constraint, see [“Notes” on page 67}

DROP PARTITIONING KEY
Drops the partitioning key. The table must have a partitioning key and
must be in a table space defined on a single-partition database partition
group.

DROP RESTRICT ON DROP

Removes the restriction on dropping the table, and the table space that
contains the table.

Chapter 1. Statements 63

ALTER TABLE

DATA CAPTURE

Indicates whether extra information for data replication is to be written to
the log.

If the table is a typed table, then this option is not supported (SQLSTATE
428DH for root tables or 428DR for other subtables).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table
will be written to the log. This option is required if this table will be
replicated and the Capture program is used to capture changes for
this table from the log.

If the table is defined to allow data on a partition other than the
catalog partition (multiple partition database partition group or
database partition group with partition other than the catalog
partition), then this option is not supported (SQLSTATE 42997).

If the schema name (implicit or explicit) of the table is longer than 18
bytes, this option is not supported (SQLSTATE 42997).

INCLUDE LONGVAR COLUMNS
Allows data replication utilities to capture changes made to
LONG VARCHAR or LONG VARGRAPHIC columns. The clause
may be specified for tables that do not have any LONG
VARCHAR or LONG VARGRAPHIC columns since it is possible
to ALTER the table to include such columns.

ACTIVATE NOT LOGGED INITIALLY

Activates the NOT LOGGED INITIALLY attribute of the table for this
current unit of work.

Any changes made to the table by an INSERT, DELETE, UPDATE,
CREATE INDEX, DROP INDEX, or ALTER TABLE in the same unit of
work after the table is altered by this statement are not logged. Any
changes made to the system catalog by the ALTER statement in which the
NOT LOGGED INITIALLY attribute is activated are logged. Any
subsequent changes made in the same unit of work to the system catalog
information are logged.

At the completion of the current unit of work, the NOT LOGGED
INITIALLY attribute is deactivated and all operations that are done on the
table in subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting
data, it is important that only this clause be specified on the ALTER
TABLE statement. Use of any other clause in the ALTER TABLE statement
will result in catalog locks. If no other clauses are specified for the ALTER

64 SQL Reference, Volume 2

ALTER TABLE

TABLE statement, then only a SHARE lock will be acquired on the system
catalog tables. This can greatly reduce the possibility of concurrency
conflicts for the duration of time between when this statement is executed
and when the unit of work in which it was executed is ended.

If the table is a typed table, this option is only supported on the root table
of the typed table hierarchy (SQLSTATE 428DR).

For more information about the NOT LOGGED INITIALLY attribute, see
the description of this attribute in “CREATE TABLE”.

Note: If non-logged activity occurs against a table that has the NOT
LOGGED INITIALLY attribute activated, and if a statement fails
(causing a rollback), or a ROLLBACK TO SAVEPOINT is executed,
the entire unit of work is rolled back (SQL1476N). Furthermore, the
table for which the NOT LOGGED INITIALLY attribute was
activated is marked inaccessible after the rollback has occurred and
can only be dropped. Therefore, the opportunity for errors within
the unit of work in which the NOT LOGGED INITIALLY attribute
is activated should be minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. Once the data has
been removed, it cannot be recovered except through use of the
RESTORE facility. If the unit of work in which this Alter statement
was issued is rolled back, the table data will NOT be returned to its
original state.

When this action is requested, no DELETE triggers defined on the
affected table are fired. Any indexes that exist on the table are also
emptied.

PCTFREE integer
Indicates what percentage of each page to leave as free space during load
or reorganization. The value of integer can range from 0 to 99. The first
row on each page is added without restriction. When additional rows are
added, at least integer percent of free space is left on each page. The
PCTFREE value is considered only by the LOAD and REORGANIZE
TABLE utilities. If the table is a typed table, this option is only supported
on the root table of the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed.
Use of this option in the table definition will not prevent normal lock
escalation from occurring. If the table is a typed table, this option is only
supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

Chapter 1. Statements 65

ALTER TABLE

ROW
Indicates the use of row locks. This is the default lock size when a
table is created.

TABLE
Indicates the use of table locks. This means that the appropriate share
or exclusive lock is acquired on the table and intent locks (except
intent none) are not used. Use of this value may improve the
performance of queries by limiting the number of locks that need to
be acquired. However, concurrency is also reduced since all locks are
held over the complete table.

APPEND
Indicates whether data is appended to the end of the table data or placed
where free space is available in data pages. If the table is a typed table,
this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

ON
Indicates that table data will be appended and information about free
space on pages will not be kept. The table must not have a clustered
index (SQLSTATE 428CA).

OFF
Indicates that table data will be placed where there is available space.
This is the default when a table is created.

The table should be reorganized after setting APPEND OFF since the
information about available free space is not accurate and may result
in poor performance during insert.

VOLATILE
This indicates to the optimizer that the cardinality of table table-name can
vary significantly at run time, from empty to quite large. To access
table-name the optimizer will use an index scan rather than a table scan,
regardless of the statistics, if that index is index-only (all columns
referenced are in the index) or that index is able to apply a predicate in
the index scan. If the table is a typed table, this option is only supported
on the root table of the typed table hierarchy (SQLSTATE 428DR).

NOT VOLATILE
This indicates to the optimizer that the cardinality of table-name is not
volatile. Access Plans to this table will continue to be based on the
existing statistics and on the optimization level in place.

CARDINALITY
An optional key word to indicate that it is the number of rows in the
table that is volatile and not the table itself.

66 SQL Reference, Volume 2

ALTER TABLE

VALUE COMPRESSION
Specifies whether or not NULL and 0-length data values are to be stored
more efficiently for most data types. This also determines the row format
that is to be used. If the table is a typed table, this option is only
supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

ACTIVATE
Specifies that 0-length data values for columns whose data type is
BLOB, CLOB, DBCLOB, LONG VARCHAR, or LONG VARGRAPHIC
are to be stored using minimal space. Each NULL value is stored
without using an additional byte. The row format that is used to
support this determines the byte counts for each data type, and tends
to cause data fragmentation during updates. The new row format
(specified for a column through the COMPRESS SYSTEM DEFAULT
option) also allows system default values for the column to be stored
more efficiently.

DEACTIVATE
Specifies that NULL values are to be stored with space set aside for
possible future updates. This space is not set aside for varying-length
columns. The row format used determines the byte counts for each
data type. It also does not support efficient storage of system default
values for a column. If columns already exist with the COMPRESS
SYSTEM DEFAULT attribute, a warning is returned (SQLSTATE
01648).

An update operation will cause an existing row to be changed to the
new row format. Offline table reorganization is recommended to
improve the performance of update operations on existing rows.

Rules:

* Any unique or primary key constraint defined on the table must be a
superset of the partitioning key, if there is one (SQLSTATE 42997).

¢ Primary or unique keys cannot be subsets of dimensions (SQLSTATE
429BE).

* A column can only be referenced in one ADD or ALTER COLUMN clause
in a single ALTER TABLE statement (SQLSTATE 42711).

* A column length cannot be altered if the table has any materialized query
tables that are dependent on the table (SQLSTATE 42997).

* Before adding a generated column, the table must be set into the
check-pending state, using the SET INTEGRITY statement (SQLSTATE
55019).

Notes:

Chapter 1. Statements 67

ALTER TABLE

Altering a table to a materialized query table will put the table in
check-pending state. If the table is defined as REFRESH IMMEDIATE, the
table must be taken out of check-pending state before INSERT, DELETE, or
UPDATE commands can be invoked on the table referenced by the
fullselect. The table can be taken out of check-pending state by using
REFRESH TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED
option, to completely refresh the data in the table based on the fullselect. If
the data in the table accurately reflects the result of the fullselect, the
IMMEDIATE UNCHECKED option of SET INTEGRITY can be used to take
the table out of check-pending state.

Altering a table to change it to a REFRESH IMMEDIATE materialized query
table will cause any packages with INSERT, DELETE, or UPDATE usage on
the table referenced by the fullselect to be invalidated.

Altering a table to change from a materialized query table to a regular table
(DEFINITION ONLY) will cause any packages dependent on the table to be
invalidated.

If a deferred materialized query table is associated with a staging table, the
staging table will be dropped if the materialized query table is altered to a
regular table.

ADD column clauses are processed prior to all other clauses. Other clauses
are processed in the order that they are specified.

Any columns added via ALTER TABLE will not automatically be added to
any existing view of the table.

When an index is automatically created for a unique or primary key
constraint, the database manager will try to use the specified constraint
name as the index name with a schema name that matches the schema
name of the table. If this matches an existing index name or no name for
the constraint was specified, the index is created in the SYSIBM schema
with a system-generated name formed of "SQL" followed by a sequence of
15 numeric characters generated by a timestamp based function.

Any table that may be involved in a DELETE operation on table T is said to
be delete-connected to T. Thus, a table is delete-connected to T if it is a
dependent of T or it is a dependent of a table in which deletes from T
cascade.

A package has an insert (update/delete) usage on table T if records are
inserted into (updated in/deleted from) T either directly by a statement in
the package, or indirectly through constraints or triggers executed by the
package on behalf of one of its statements. Similarly, a package has an
update usage on a column if the column is modified directly by a statement
in the package, or indirectly through constraints or triggers executed by the
package on behalf of one of its statements.

Any changes to primary key, unique keys, or foreign keys may have the
following effect on packages, indexes, and other foreign keys.

68 SQL Reference, Volume 2

ALTER TABLE

— If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys.
(If the primary or unique key uses an existing unique index that was
created in a previous version and has not been converted to support
deferred uniqueness, the index is converted, and packages with
update usage on the associated table are invalidated.)

— If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint.
Any packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for
the constraint and it is no longer system-required. Any packages
dependent on the index are invalidated.

- The index is set to no longer system required if it was an existing
unique index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for
each dependent foreign key, as specified in the next item.

— If a foreign key is added, dropped, or altered from NOT ENFORCED to
ENFORCED (or ENFORCED to NOT ENFORCED):

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the
foreign key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the
parent key are invalidated.

— If a foreign key is altered from ENABLE QUERY OPTIMIZATION to
DISABLE QUERY OPTIMIZATION:

- All packages with dependencies on the constraint for optimization
purposes are invalidated.

— Adding a column to a table will result in invalidation of all packages
with insert usage on the altered table. If the added column is the first
user-defined structured type column in the table, packages with DELETE
usage on the altered table will also be invalidated.

— Adding a check or referential constraint to a table that already exists and
that is not in check pending state, or altering the existing check or
referential constraint from NOT ENFORCED to ENFORCED on an
existing table that is not in check pending state will cause the existing
rows in the table to be immediately evaluated against the constraint. If
the verification fails, an error (SQLSTATE 23512) is raised. If a table is in
check pending state, adding a check or referential constraint, or altering
a constraint from NOT ENFORCED to ENFORCED will not immediately
lead to the enforcement of the constraint. Instead, the corresponding

Chapter 1. Statements 69

ALTER TABLE

constraint type flags used in the check pending operation will be
updated. Issue the SET INTEGRITY statement to begin enforcing the
constraint.

Adding, altering, or dropping a check constraint will result in
invalidation of all packages with either an insert usage on the object
table, an update usage on at least one of the columns involved in the
constraint, or a select usage exploiting the constraint to improve
performance.

Adding a partitioning key will result in invalidation of all packages with
an update usage on at least one of the columns of the partitioning key.

A partitioning key that was defined by default as the first column of the
primary key is not affected by dropping the primary key and adding a
different primary key.

Altering a column to increase the length will invalidate all packages that
reference the table (directly or indirectly through a referential constraint
or trigger) with the altered column.

Altering a column to increase the length will regenerate views (except
typed views) that are dependent on the table. If an error occurs while
regenerating a view, an error is returned (SQLSTATE 56098). Any typed
views that are dependent on the table are marked inoperative.

Altering a column to increase the length may cause errors (SQLSTATE
54010) in processing triggers when a statement that would involve the
trigger is prepared or bound. This may occur when row length based on
the sum of the lengths of the transition variables and transition table
columns is too long. If such a trigger were dropped a subsequent
attempt to create it would result in an error (SQLSTATE 54040).
VARCHAR and VARGRAPHIC columns that have been altered to be
greater than 4000 and 2000 respectively should not be used as input
parameters in functions in the SYSFUN schema (SQLSTATE 22001).
Altering a structured type column to increase the inline length will
invalidate all packages that reference the table, either directly or
indirectly through a referential constraint or trigger.

Altering a structured type column to increase the inline length will
regenerate views that are dependent on the table.

Changing the LOCKSIZE for a table will result in invalidation of all
packages that have a dependency on the altered table.

The ACTIVATE NOT LOGGED INITIALLY clause can not be used when
DATALINK columns with the FILE LINK CONTROL attribute are being
added to the table (SQLSTATE 42613).

Changing VOLATILE or NOT VOLATILE CARDINALITY will result in
invalidation of all packages that have a dependency on the altered table.

Replication customers should take caution when increasing the length of
VARCHAR columns. The change data table associated with an

70 SQL Reference, Volume 2

ALTER TABLE

application table might already be at or near the DB2 rowsize limit. The
change data table should be altered before the application table, or the
two should be altered within the same unit of work, to ensure that the
alteration can be completed for both tables. Consideration should be
given for copies, which may also be at or near the rowsize limit, or
reside on platforms which lack the feature to increase the length of an
existing column.

If the change data table is not altered before the Capture program
processes log records with the increased VARCHAR column length, the
Capture program will likely fail. If a copy containing the VARCHAR
column is not altered before the subscription maintaining the copy runs,
the subscription will likely fail.

— Compatibilities
- For compatibility with previous versions of DB2:
* The ADD keyword is optional for:
— Unnamed PRIMARY KEY constraints
— Unnamed referential constraints

— Referential constraints whose name follows the phrase FOREIGN
KEY

* The CONSTRAINT keyword can be omitted from a column-definition
defining a references-clause

* constraint-name can be specified following FOREIGN KEY (without
the CONSTRAINT keyword)

* SET SUMMARY AS can be specified in place of SET
MATERIALIZED QUERY AS

- For compatibility with previous versions of DB2 and for consistency:

* A comma can be used to separate multiple options in the
identity-alteration clause.

- The following syntax is also supported:

*+ NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and
NOORDER

Examples:

Example 1: Add a new column named RATING, which is one character long,
to the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table.
Create SITE_NOTES as a varying-length column with a maximum length of

Chapter 1. Statements 71

ALTER TABLE

72

1000 characters. The values of the column do not have an associated character
set and therefore should not be translated.

ALTER TABLE PROJECT
ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3: Assume a table called EQUIPMENT exists defined with the
following columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR (50)
LOCATION VARCHAR (50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in
the DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT
table. If a department is removed from the DEPARTMENT table, the owner
(EQUIP_OWNER) values for all equipment owned by that department should
become unassigned (or set to null). Give the constraint the name DEPTQUIP.
ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)

REFERENCES DEPARTMENT
ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity

associated with this equipment record. Unless otherwise specified, the

EQUIP_QTY column should have a value of 1 and must never be null.
ALTER TABLE EQUIPMENT

ADD COLUMN EQUIP_QTY
SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named
REVENUE defined so that each employee must make a total of salary and
commission greater than $30,000.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 30000)

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was
previously defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

ALTER TABLE SALARY1
DATA CAPTURE NONE

SQL Reference, Volume 2

ALTER TABLE

Example 7: Alter a table to log SQL changes in an expanded format.

ALTER TABLE SALARY2
DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default
values.
ALTER TABLE EMPLOYEE
ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')
ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'01')
ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

The default values use various function names when specifying the default.
Since MEASURE is a distinct type based on INTEGER, the MEASURE
function is used. The HEIGHT column default could have been specified
without the function since the source type of MEASURE is not BLOB or a
datetime data type. Since BIRTHDATE is a distinct type based on DATE, the
DATE function is used (BIRTHDATE cannot be used here). For the FLAGS
and PHOTO columns the default is specified using the BLOB function even
though PHOTO is a distinct type. To specify a default for BIRTHDAY, FLAGS
and PHOTO columns, a function must be used because the type is a BLOB or
a distinct type sourced on a BLOB or datetime data type.

Example 9: A table called CUSTOMERS is defined with the following columns:

Column Name Data Type
BRANCH_NO SMALLINT
CUSTOMER_NO DECIMAL(7)
CUSTOMER_NAME VARCHAR (50)

In this table, the primary key is made up of the BRANCH_NO and
CUSTOMER_NO columns. To partition the table, you will need to create a
partitioning key for the table. The table must be defined in a table space on a
single-node database partition group. The primary key must be a superset of
the partitioning columns: at least one of the columns of the primary key must
be used as the partitioning key. Make BRANCH_NO the partitioning key as
follows:

ALTER TABLE CUSTOMERS
ADD PARTITIONING KEY (BRANCH_NO)

Related reference:
* ["ALTER TYPE (Structured)” on page 83
* ['CREATE TABLE” on page 332

Related samples:
* “dbrecov.sqc -- How to recover a database (C)”
¢ “tbconstr.sqc -- How to create, use, and drop constraints (C)”

Chapter 1. Statements 73

ALTER TABLE

* “dbrecov.sqC -- How to recover a database (C++)”

» “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

* “tbconstr.sqC -- How to create, use, and drop constraints (C++)”
* “TbGenColjava -- How to use generated columns (JDBC)”

74 SQL Reference, Volume 2

ALTER TABLESPACE

ALTER TABLESPACE

The ALTER TABLESPACE statement is used to modify an existing tablespace
in the following ways:

* Add a container to, or drop a container from a DMS tablespace; that is, a
tablespace created with the MANAGED BY DATABASE option.

* Modify the size of a container in a DMS tablespace.

* Add a container to an SMS table space on a partition that currently has no
containers.

* Modify the PREFETCHSIZE setting for a tablespace.

* Modify the BUFFERPOOL used for tables in the tablespace.
* Modify the OVERHEAD setting for a tablespace.

* Modify the TRANSFERRATE setting for a tablespace.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared
only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax:

»>—ALTER TABLESPACE—tablespac

"l ADD- i database-container-clause i | <
LTO STRIPE SET—strl’peset—I l—' on-db-partitions-clause '—I |
system-container-clause '—! on-db-partitions-clause i
-BEGIN NEW STRIPE SET—' database-container-clause I |_|

on-db-partitions-clause |—|

—DROP—| drop-container-clause I
on-db-partitions-clause 'J

EXTEND: database-container-clause I
—EREDUCEH_EI all-containers-clause '—I |—| on-db-partitions-clause 'J

RESIZE:
|-PREFETCHSIZE: T ber-of-page
integerw
G
—BUFFERPOOL—bufferpool
—OVERHEAD—number-of-millisecond:

-TRANSFERRATE—number-of-millisecond:
-DROPPED TABLE RECOVERY: ON:
Corr]

L-SWITCH ONLINE.

Chapter 1. Statements 75

ALTER TABLESPACE

database-container-clause:

|—(—|:v FILE—_l—’ —container-string— —[number of-pages)
DEVICE }—/

znteger—E

drop-container-clause:

FILE ' —container-string—' J—)

T

system-container-clause:

on-db-partitions-clause:

|—0N—|:DBPARTITIONNUM——|—(
DBPARTITIONNUMS

B

»—Y—db-partition-numberl

|—TO—db—part i zfz'on—number*Z—|

all-containers-clause:

CONTAINERS
[1

F—(—ALL

Description:

,,umber -of-pages
lntege r—E }——,7
tablespace-name

Names the tablespace. This is a one-part name. It is a long SQL identifier
(either ordinary or delimited).

ADD
Specifies that one or more new containers are to be added to the
tablespace.

76 SQL Reference, Volume 2

ALTER TABLESPACE

TO STRIPE SET stripeset
Specifies that one or more new containers are to be added to the
tablespace, and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET
Specifies that a new stripe set is to be created in the tablespace, and that
one or more containers are to be added to this new stripe set. Containers
that are subsequently added using the ADD option will be added to this
new stripe set unless TO STRIPE SET is specified.

DROP
Specifies that one or more containers are to be dropped from the
tablespace.

EXTEND
Specifies that existing containers are to be increased in size. The size
specified is the size by which the existing container is increased. If the
all-containers-clause is specified, all containers in the tablespace will
increase by this size.

REDUCE
Specifies that existing containers are to be reduced in size. The size
specified is the size by which the existing container is decreased. If the
all-containers-clause is specified, all containers in the tablespace will
decrease by this size.

RESIZE
Specifies that the size of existing containers is to be changed. The size
specified is the new size for the container. If the all-containers-clause is
specified, all containers in the tablespace will be changed to this size. If
the operation affects more than one container, these containers must all
either increase in size, or decrease in size. It is not possible to increase
some while decreasing others (SQLSTATE 429BC).

database-container-clause
Adds one or more containers to a DMS tablespace. The tablespace must
identify a DMS tablespace that already exists at the application server.

drop-container-clause
Drops one or more containers from a DMS tablespace. The tablespace
must identify a DMS tablespace that already exists at the application
server.

system-container-clause
Adds one or more containers to an SMS tablespace on the specified
partitions. The tablespace must identify an SMS tablespace that already
exists at the application server. There must not be any containers on the
specified partitions for the tablespace. (SQLSTATE 42921).

Chapter 1. Statements 77

ALTER TABLESPACE

78

on-db-partitions-clause
Specifies one or more partitions for the corresponding container
operations.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS tablespace. The
tablespace must identify a DMS tablespace that already exists at the
application server.

PREFETCHSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be read from the
tablespace when data prefetching is being performed. The prefetch size
value can also be specified as an integer value followed by K (for
kilobytes), M (for megabytes), or G (for gigabytes). If specified in this way,
the floor of the number of bytes divided by the pagesize is used to
determine the number of pages value for prefetch size. Prefetching reads
in data needed by a query prior to it being referenced by the query, so
that the query need not wait for I/O to be performed.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this tablespace. The buffer
pool must currently exist in the database (SQLSTATE 42704). The database
partition group of the tablespace must be defined for the bufferpool
(SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
I/0 controller overhead and disk seek and latency time, in milliseconds.
The number should be an average for all containers that belong to the
tablespace, if not the same for all containers. This value is used to
determine the cost of I/O during query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
time to read one page (4K or 8K) into memory, in milliseconds. The
number should be an average for all containers that belong to the
tablespace, if not the same for all containers. This value is used to
determine the cost of I/O during query optimization.

DROPPED TABLE RECOVERY
Dropped tables in the specified tablespace may be recovered using the
RECOVER DROPPED TABLE ON option of the ROLLFORWARD
command.

SWITCH ONLINE
Tablespaces in OFFLINE state are brought online if the containers have

become accessible. If the containers are not accessible an error is returned
(SQLSTATE 57048).

SQL Reference, Volume 2

ALTER TABLESPACE

Notes:

Compatibilities

For compatibility with versions earlier than Version 8, the keyword:
— NODE can be substituted for DBPARTITIONNUM

— NODES can be substituted for DBPARTITIONNUMS

Default container operations are container operations that are specified in
the ALTER TABLESPACE statement, but that are not explicitly directed to a
specific database partition. These container operations are sent to any
database partition that is not listed in the statement. If these default
container operations are not sent to any database partition, because all
database partitions are explicitly mentioned for a container operation, a
warning is returned (SQLSTATE 1758W).

Once space has been added or removed from a tablespace, and the
transaction is committed, the contents of the tablespace may be rebalanced
across the containers. Access to the tablespace is not restricted during
rebalancing.

If the tablespace is in OFFLINE state and the containers have become
accessible, the user can disconnect all applications and connect to the
database again to bring the tablespace out of OFFLINE state. Alternatively,
SWITCH ONLINE option can bring the tablespace up (out of OFFLINE)
while the rest of the database is still up and being used.

If adding more than one container to a tablespace, it is recommended that
they be added in the same statement so that the cost of rebalancing is
incurred only once. An attempt to add containers to the same tablespace in
separate ALTER TABLESPACE statements within a single transaction will
result in an error (SQLSTATE 55041).

Any attempts to extend, reduce, resize, or drop containers that do not exist
will raise an error (SQLSTATE 428B2).

When extending, reducing, or resizing a container, the container type must
match the type that was used when the container was created (SQLSTATE
428B2).

An attempt to change container sizes in the same tablespace, using separate
ALTER TABLESPACE statements but within a single transaction, will raise
an error (SQLSTATE 55041).

In a partitioned database if more than one database partition resides on the
same physical node, the same device or specific path cannot be specified for
such database partitions (SQLSTATE 42730). For this environment, either
specify a unique container-string for each database partition or use a relative
path name.

Although the tablespace definition is transactional and the changes to the
tablespace definition are reflected in the catalog tables on commit, the
buffer pool with the new definition cannot be used until the next time the

Chapter 1. Statements 79

ALTER TABLESPACE

80

database is started. The buffer pool in use, when the ALTER TABLESPACE
statement was issued, will continue to be used in the interim.

Rules:

* The BEGIN NEW STRIPE SET clause cannot be specified in the same
statement as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those
clauses are being directed to different partitions (SQLSTATE 429BC).

* The stripe set value specified with the TO STRIPE SET clause must be
within the valid range for the tablespace being altered (SQLSTATE 42615).

* When adding or removing space from the tablespace, the following rules
must be followed:

— EXTEND and RESIZE can be used in the same statement, provided that
the size of each container is increasing (SQLSTATE 429BC).

— REDUCE and RESIZE can be used in the same statement, provided that
the size of each container is decreasing (SQLSTATE 429BC).

— EXTEND and REDUCE cannot be used in the same statement, unless
they are being directed to different partitions (SQLSTATE 429BC).

— ADD cannot be used with REDUCE or DROP in the same statement,
unless they are being directed to different partitions (SQLSTATE 429BC).

— DROP cannot be used with EXTEND or ADD in the same statement,
unless they are being directed to different partitions (SQLSTATE 429BC).

Examples:

Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE PAYROLL
ADD (DEVICE '/dev/rhdisk9' 10000)

Example 2: Change the prefetch size and 1/O overhead for the
ACCOUNTING table space.

ALTER TABLESPACE ACCOUNTING
PREFETCHSIZE 64
OVERHEAD 19.3

Example 3: Create a tablespace TS1, then resize the containers so that all of
the containers have 2000 pages (three different ALTER TABLESPACES which
will accomplish this resizing are provided).

CREATE TABLESPACE TS1
MANAGED BY DATABASE
USING (FILE '/conts/contO' 1000,
DEVICE '/dev/rcontl' 500,
FILE 'cont2' 700)

SQL Reference, Volume 2

ALTER TABLESPACE

ALTER TABLESPACE TS1
RESIZE (FILE '/conts/contO' 2000,
DEVICE '/dev/rcontl' 2000,
FILE 'cont2' 2000)

OR

ALTER TABLESPACE TS1
RESIZE (ALL 2000)

OR

ALTER TABLESPACE TS1
EXTEND (FILE '/conts/cont0' 1000,
DEVICE '/dev/rcontl' 1500,
FILE 'cont2' 1300)

Example 4: Extend all of the containers in the DATA_TS tablespace by 1000
pages.
ALTER TABLESPACE DATA TS
EXTEND (ALL 1000)

Example 5: Resize all of the containers in the INDEX_TS tablespace to 100
megabytes (MB).
ALTER TABLESPACE INDEX_TS
RESIZE (ALL 100 M)

Example 6: Add three new containers. Extend the first container, and resize
the second.
ALTER TABLESPACE TSO
ADD (FILE 'cont2' 2000, FILE 'cont3' 2000)
ADD (FILE 'cont4' 2000)
EXTEND (FILE 'contO' 100)
RESIZE (FILE 'contl' 3000)

Example 7: Table space TSO exists on partitions 0, 1 and 2. Add a new
container to database partition 0. Extend all of the containers on database
partition 1. Resize a container on all database partitions other than the ones
that were explicitly specified (that is, database partitions 0 and 1).
ALTER TABLESPACE TSO
ADD (FILE 'A' 200) ON DBPARTITIONNUM (0)

EXTEND (ALL 200) ON DBPARTITIONNUM (1)
RESIZE (FILE 'B' 500)

The RESIZE clause is the default container clause in this example, and will be
executed on database partition 2, because other operations are being explicitly
sent to database partitions 0 and 1. If, however, there had only been these two
database partitions, the statement would have succeeded, but returned a

warning (SQL1758W) that default containers had been specified but not used.

Chapter 1. Statements 81

ALTER TABLESPACE

Related reference:
* ['CREATE TABLESPACE” on page 395|

82 SQL Reference, Volume 2

ALTER TYPE (Structured)

ALTER TYPE (Structured)

The ALTER TYPE statement is used to add or drop attributes or method
specifications of a user-defined structured type. Properties of existing methods
can also be altered.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

¢ SYSADM or DBADM authority
* ALTERIN privilege on the schema of the type

* Definer of the type, as recorded in the DEFINER column of
SYSCAT.DATATYPES

To alter a method to be not fenced, the privileges held by the authorization ID
of the statement must also include at least one of the following;:

* SYSADM or DBADM authority
¢ CREATE_NOT_FENCED_ROUTINE authority on the database

To alter a method to be fenced, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»»>—ALTER TYPE—type-name >

Chapter 1. Statements 83

ALTER TYPE (Structured)

84

> ADD ATTRIBUTE—I attribute-definition

rRESTl]%ICT—l
—DROP ATTRIBUTE—attribute-name
—ADD METHOD—| method-specification i

—ALTER—| method-identifier r—l method-options r—L—

|—R STRICT—I
—DROP—| method-identifier i

method-identifier:

METHOD—me thod-name
L)

L(—'data— type——)J

SPECIFIC METHOD—specific-name

method-options:

| FENCED
[
|—N0T FENCED—l
THREADSAFE

NOT THREADSAFE

Description:

type-name
Identifies the structured type to be changed. It must be an existing type
defined in the catalog (SQLSTATE 42704), and the type must be a
structured type (SQLSTATE 428DP). In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.
ADD ATTRIBUTE
Adds an attribute after the last attribute of the existing structured type.
attribute-definition
Defines the attributes of the structured type.
attribute-name
Specifies a name for the attribute. The name cannot be the same
as any other attribute of this structured type (including inherited

attributes) or any subtype of this structured type (SQLSTATE
42711).

SQL Reference, Volume 2

ALTER TYPE (Structured)

A number of names used as keywords in predicates are reserved
for system use, and may not be used as an attribute-name
(SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND,
OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS,
SIMILAR, MATCH and the comparison operators.

data-type 1
Specifies the data type of the attribute. It is one of the data types
listed under CREATE TABLE, other than LONG VARCHAR,
LONG VARGRAPHIC, or a distinct type based on LONG
VARCHAR or LONG VARGRAPHIC (SQLSTATE 42601). The data
type must identify an existing data type (SQLSTATE 42704). If
data-type is specified without a schema name, the type is resolved
by searching the schemas on the SQL path. The description of
various data types is given in “CREATE TABLE". If the attribute
data type is a reference type, the target type of the reference must
be a structured type that exists (SQLSTATE 42704).

A structured type defined with an attribute of type DATALINK
can only be effectively used as the data type for a typed table or a
typed view (SQLSTATE 01641).

To prevent type definitions that, at run time, would permit an
instance of the type to directly, or indirectly, contain another
instance of the same type or one of its subtypes, there is a
restriction that a type may not be defined such that one of its
attribute types directly or indirectly uses itself (SQLSTATE 428EP).

lob-options
Specifies the options associated with LOB types (or distinct types
based on LOB types). For a detailed description of lob-options, see
“CREATE TABLE”.

datalink-options
Specifies the options associated with DATALINK types (or distinct
types based on DATALINK types). For a detailed descriptions of
datalink-options, see “CREATE TABLE”.

Note that if no options are specified for a DATALINK type, or
distinct type sourced on the DATALINK type, LINKTYPE URL
and NO LINK CONTROL are the default options.

DROP ATTRIBUTE
Drops an attribute of the existing structured type.

attribute-name
The name of the attribute. The attribute must exist as an attribute of
the type (SQLSTATE 42703).

Chapter 1. Statements 85

ALTER TYPE (Structured)

86

RESTRICT
Enforces the rule that no attribute can be dropped if type-name is used
as the type of an existing table, view, column, attribute nested inside
the type of a column, or an index extension.

ADD METHOD method-specification
Adds a method specification to the type identified by type-name. The
method cannot be used until a separate CREATE METHOD statement is
used to give the method a body. For more information about
method-specification, see “CREATE TYPE (Structured)”.

ALTER method-identifier
Uniquely identifies an instance of a method that is to be altered. The
specified method may or may not have an existing method body. Methods
declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).

method-identifier

METHOD method-name
Identifies a particular method, and is valid only if there is exactly
one method instance with the name method-name for the type
type-name. The identified method can have any number of
parameters defined for it. If no method by this name exists for the
type, an error (SQLSTATE 42704) is raised. If there is more than
one instance of the method for the type, an error (SQLSTATE
42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the
method. The method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The
number of data types, and the logical concatenation of the
data types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to
data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for
the parameterized data types. Instead, an empty set of
parentheses can be coded to indicate that these attributes are
to be ignored when looking for a data type match.

SQL Reference, Volume 2

ALTER TYPE (Structured)

FLOAT() cannot be used (SQLSTATE 42601), because the
parameter value indicates different data types (REAL or
DOUBLE).

If length, precision, or scale is coded, the value must exactly
match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value
for n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no method with the specified signature exists for the type in
the named or implied schema, an error (SQLSTATE 42883) is
raised.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names. The specific-name must
identify a specific method instance in the named or implied
schema; otherwise, an error (SQLSTATE 42704) is raised.

method-options
Specifies the options that are to be altered for the method.

FENCED or NOT FENCED
Specifies whether the method is considered safe to run in the database
manager operating environment’s process or address space (NOT
FENCED), or not (FENCED). Most methods have the option of
running as FENCED or NOT FENCED.

If a method is altered to be FENCED, the database manager insulates
its internal resources (for example, data buffers) from access by the
method. In general, a method running as FENCED will not perform
as well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for methods that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2
takes some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be
NOT FENCED (SQLSTATE 42613).

Chapter 1. Statements 87

ALTER TYPE (Structured)

88

If a method has any parameters defined AS LOCATOR, and was
defined with the NO SQL option, the method cannot be altered to be
FENCED (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods
(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE
Specifies whether a method is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT
THREADSAEFE).

If the method is defined with LANGUAGE other than OLE:

If the method is defined as THREADSAFE, the database manager
can invoke the method in the same process as other routines. In
general, to be threadsafe, a method should not use any global or
static data areas. Most programming references include a discussion
of writing threadsafe routines. Both FENCED and NOT FENCED
methods can be THREADSAFE. If the method is defined with
LANGUAGE OLE, THREADSAFE may not be specified (SQLSTATE
42613).

If the method is defined as NOT THREADSAFE, the database
manager will never invoke the method in the same process as
another routine. Only a fenced method can be NOT THREADSAFE
(SQLSTATE 42613).

DROP method-identifier
Uniquely identifies an instance of a method that is to be dropped. The
specified method must not have an existing method body (SQLSTATE
428ER). Use the DROP METHOD statement to drop the method body
before using ALTER TYPE DROP METHOD. Methods implicitly generated
by the CREATE TYPE statement (such as mutators and observers) cannot
be dropped (SQLSTATE 42917).

RESTRICT
Indicates that the specified method is restricted from having an existing
method body. Use the DROP METHOD statement to drop the method
body before using ALTER TYPE DROP METHOD.

Rules:

* Adding or dropping an attribute is not allowed for type type-name
(SQLSTATE 55043) if either:

— The type or one of its subtypes is the type of an existing table or view.

— There exists a column of a table whose type directly or indirectly uses
type-name. The terms directly uses and indirectly uses are defined in
“Structured types”.

SQL Reference, Volume 2

ALTER TYPE (Structured)

The type or one of its subtypes is used in an index extension.

* A type may not be altered by adding attributes so that the total number of
attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE
54050).

* ADD ATTRIBUTE option:

ADD ATTRIBUTE generates observer and mutator methods for the new
attribute. These methods are similar to those generated when a
structured type is created (see “CREATE TYPE (Structured)”). If these
methods conflict with or override any existing methods or functions, the
ALTER TYPE statement fails (SQLSTATE 42745).

If the INLINE LENGTH for the type (or any of its subtypes) was
explicitly specified by the user with a value less than 292, and the
attributes added cause the specified inline length to be less than the size
of the result of the constructor function for the altered type (32 bytes
plus 10 bytes per attribute), then an error results (SQLSTATE 42611).

¢ DROP ATTRIBUTE option:

An attribute that is inherited from an existing supertype cannot be
dropped (SQLSTATE 428D]).

DROP ATTRIBUTE drops the mutator and observer methods of the
dropped attributes, and checks dependencies on those dropped methods.

¢ DROP METHOD option:

An original method that is overridden by other methods cannot be
dropped (SQLSTATE -2).

Notes:

* It is not possible to alter a method that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

* When a type is altered by adding or dropping an attribute, all packages are
invalidated that depend on functions or methods that use this type or a
subtype of this type as a parameter or a result.

* When an attribute is added to or dropped from a structured type:

If the INLINE LENGTH of the type was calculated by the system when
the type was created, the INLINE LENGTH values are automatically
modified for the altered type, and all of its subtypes to account for the
change. The INLINE LENGTH values are also automatically (recursively)
modified for all structured types where the INLINE LENGTH was
calculated by the system and the type includes an attribute of any type
with a changed INLINE LENGTH.

If the INLINE LENGTH of any type affected by adding or dropping
attributes was explicitly specified by a user, then the INLINE LENGTH
for that particular type is not changed. Special care must be taken for
explicitly specified inline lengths. If it is likely that a type will have

Chapter 1. Statements 89

ALTER TYPE (Structured)

90

attributes added later on, then the inline length, for any uses of that type
or one of its subtypes in a column definition, should be large enough to
account for the possible increase in length of the instantiated object.

— If new attributes are to be made visible to application programs, existing
transform functions must be modified to match the new structure of the
data type.

* Privileges

The EXECUTE privilege is not given for any methods explicitly specified in

the ALTER TYPE statement until a method body is defined using the

CREATE METHOD statement. The definer of the user-defined type has the
ability to drop the method specification using the ALTER TYPE statement.

Examples:

Example 1: The ALTER TYPE statement can be used to permit a cycle of
mutually referencing types and tables. Consider mutually referencing tables
named EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.

CREATE TYPE DEPT ...

CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF (EMP)

CREATE TABLE DEPARTMENT OF DEPT ...

CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.

DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
DROP TABLE DEPARTMENT

ALTER TYPE DEPT DROP ATTRIBUTE MANAGER

DROP TYPE EMP

DROP TYPE DEPT

Example 2: The ALTER TYPE statement can be used to create a type with an
attribute that references a subtype.
CREATE TYPE EMP ...

CREATE TYPE MGR UNDER EMP ...
ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF (MGR)

Example 3: The ALTER TYPE statement can be used to add an attribute. The
following statement adds the SPECIAL attribute to the EMP type. Because the
inline length was not specified on the original CREATE TYPE statement, DB2
recalculates the inline length by adding 13 (10 bytes for the new attribute +
attribute length + 2 bytes for a non-LOB attribute).

ALTER TYPE EMP ...
ADD ATTRIBUTE SPECIAL CHAR(1)

SQL Reference, Volume 2

ALTER TYPE (Structured)

Example 4: The ALTER TYPE statement can be used to add a method
associated with a type. The following statement adds a method called
BONUS.
ALTER TYPE EMP ..
ADD METHOD BONUS (RATE DOUBLE)

RETURNS INTEGER

LANGUAGE SQL

CONTAINS SQL

NO EXTERNAL ACTION

DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD
statement is issued to create the method body. If it is assumed that type EMP
includes an attribute called SALARY, then the following is an example of a
method body definition.

CREATE METHOD BONUS(RATE DOUBLE) FOR EMP
RETURN CAST(SELF.SALARY * RATE AS INTEGER)

Related reference:

+ [“CREATE TABLE” on page 332

 [“CREATE TYPE (Structured)” on page 427

« ["CREATE METHOD” on page 285|

* “User-defined types” in the SQL Reference, Volume 1

Related samples:

¢ “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

Chapter 1. Statements 91

ALTER USER MAPPING

ALTER USER MAPPING

92

The ALTER USER MAPPING statement is used to change the authorization
ID or password that is used at a data source for a specified federated server
authorization ID.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

If the authorization ID of the statement is different than the authorization
name that is mapped to the data source, then the authorization ID of the

statement must include SYSADM or DBADM authority. Otherwise, if the

authorization ID and the authorization name match, then no privileges or
authorities are required.

Syntax:

»»—ALTER USER MAPPING FOR—[authorization-name:l—SERVER—server—namc
USER

|_ ADD
»—OPTIONS—(—~ user-option-name—string-constant) ><
SET
DROP—user-option-name

Description:

authorization-name
Specifies the authorization name under which a user or application
connects to a federated database.

USER
The value in the special register USER. When USER is specified, then the
authorization ID of the ALTER USER MAPPING statement will be
mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

SERVER server-name
Identifies the data source accessible under the remote authorization ID

SQL Reference, Volume 2

ALTER USER MAPPING

that maps to the local authorization ID that’s denoted by
authorization-name or referenced by USER.

OPTIONS
Indicates what user options are to be enabled, reset, or dropped for the
mapping that is being altered.

ADD
Enables a user option.

SET
Changes the setting of a user option.

user-option-name
Names a user option that is to be enabled or reset.

string-constant
Specifies the setting for user-option-name as a character string constant.

DROP user-option-name
Drops a user option.

Notes:

* A user option cannot be specified more than once in the same ALTER USER
MAPPING statement (SQLSTATE 42853). When a user option is enabled,
reset, or dropped, any other user options that are in use are not affected.

* A user mapping cannot be altered in a given unit of work (UOW) if the
UOW already includes a SELECT statement that references a nickname for
a table or view at the data source that is to be included in the mapping.

Examples:

Example 1: Jim uses a local database to connect to an Oracle data source called
ORACLE1. He accesses the local database under the authorization ID
KLEEWEIN; KLEEWEIN maps to CORONA, the authorization ID under
which he accesses ORACLEL. Jim is going to start accessing ORACLE1 under
a new ID, JIMK. So KLEEWEIN now needs to map to JIMK.

ALTER USER MAPPING FOR KLEEWEIN

SERVER ORACLE1
OPTIONS (SET REMOTE_AUTHID 'JIMK')

Example 2: Mary uses a federated database to connect to a DB2 Universal
Database for OS/390 and z/OS data source called DORADO. She uses one
authorization ID to access DB2 and another to access DORADOQO, and she has
created a mapping between these two IDs. She has been using the same
password with both IDs, but now decides to use a separate password, ZNYQ,
with the ID for DORADO. Accordingly, she needs to map her federated
database password to ZNYQ.

Chapter 1. Statements 93

ALTER USER MAPPING

ALTER USER MAPPING FOR MARY
SERVER DORADO
OPTIONS (ADD REMOTE_PASSWORD 'ZNYQ')

Related reference:
* “User options for federated systems” in the Federated Systems Guide

94 SQL Reference, Volume 2

ALTER VIEW

ALTER VIEW

The ALTER VIEW statement modifies an existing view by altering a reference
type column to add a scope.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ ALTERIN privilege on the schema of the view
* Definer of the view to be altered

¢ CONTROL privilege on the view to be altered.

Syntax:

»»—ALTER VIEW—view-name >

COLUMN
»—Y ALTER column-name—~ADD SCOPE—[typed—table-namc ><
typed-view-nameJ

Description:

view-name
Identifies the view to be changed. It must be a view described in the
catalog.

ALTER COLUMN column-name
Is the name of the column to be altered in the view. The column-name
must identify an existing column of the view (SQLSTATE 42703). The
name cannot be qualified.

ADD SCOPE
Add a scope to an existing reference type column that does not already
have a scope defined (SQLSTATE 428DK). The column must not be
inherited from a superview (SQLSTATE 428D]J).

Chapter 1. Statements 95

ALTER VIEW

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM).
No checking is done of any existing values in column-name to ensure
that the values actually reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REFE(S), where S is the type of typed-view-name (SQLSTATE 428DM).
No checking is done of any existing values in column-name to ensure
that the values actually reference existing rows in typed-view-name.

96 SQL Reference, Volume 2

ALTER WRAPPER

ALTER WRAPPER

The ALTER WRAPPER statement is used to update the properties of a
wrapper.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

Syntax:

»>—ALTER WRAPPER—wrapper-name—OPTIONS >
»—(—Y-SET—wrapper-option-name 'wrapper-option-value'——) ><
Description:

wrapper-name
Specifies the name of the wrapper.

OPTIONS (SET wrapper-option-name “wrapper-option-value’, ...)
Currently, the only supported wrapper option name is DB2_FENCED;
valid values for this option are “Y" or ‘N’.

Example:

Example 1: Set the DB2_FENCED option on for wrapper SQLNET.
ALTER WRAPPER SQLNET OPTIONS (SET DB2_FENCED 'Y')

Related reference:
+ ["CREATE WRAPPER” on page 479

Chapter 1. Statements 97

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

98

The BEGIN DECLARE SECTION statement marks the beginning of a host
variable declare section.

Invocation:

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization:
None required.

Syntax:

»>—BEGIN DECLARE SECTION »><

Description:

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the
rules of the host language. It is used to indicate the beginning of a host
variable declaration section. A host variable section ends with an END
DECLARE SECTION statement.

Rules:

* The BEGIN DECLARE SECTION and the END DECLARE SECTION
statements must be paired and may not be nested.

¢ SQL statements cannot be included within the declare section.

e Variables referenced in SQL statements must be declared in a declare
section in all host languages other than REXX. Furthermore, the section
must appear before the first reference to the variable. Generally, host
variables are not declared in REXX with the exception of LOB locators and
file reference variables. In this case, they are not declared within a BEGIN
DECLARE SECTION.

¢ Variables declared outside a declare section should not have the same name
as variables declared within a declare section.

* LOB data types must have their data type and length preceded with the
SQL TYPE IS keywords.

Examples:
Example 1: Define the host variables hv_smint (smallint), hv_vchar24

(varchar(24)), hv_double (double), hv_blob_50k (blob(51200)), hv_struct (of
structured type "struct_type” as blob(10240)) in a C program.

SQL Reference, Volume 2

BEGIN DECLARE SECTION

EXEC SQL BEGIN DECLARE SECTION;

short hv_smint;

struct {

short hv_vchar24_len;

char hv_vchar24 value[24];

} hv_vchar24;

double hv_double;

SQL TYPE IS BLOB(50K) hv_blob 50k;

SQL TYPE IS struct_type AS BLOB(10k) hv_struct;
EXEC SQL END DECLARE SECTION;

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a
COBOL program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) COMP-4.
01 HV-VCHAR24.
49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.
49 HV-VCHAR24-VALUE PIC X(24).
01 HV-DEC72 PIC S9(5)V9(2) COMP-3.
01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

EXEC SQL END DECLARE SECTION END-EXEC.

Example 3: Define the host variables HVSMINT (smallint), HVVCHAR?24
(char(24)), HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran

program.

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 HVSMINT
CHARACTER*24 HVVCHAR24
REAL*8 HVDOUBLE

SQL TYPE IS BLOB(50K) HVBLOB50OK
EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 characters, then a
CLOB host variable should be used.

Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K
(blob(51200)), and HVCLOBLOC (a CLOB locator) in a REXX program.

DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR
call sqlexec 'FETCH cl INTO :HVSMINT, :HVBLOB50K'

Note that the variables HVSMINT and HVBLOB50K were implicitly defined
by using them in the FETCH statement.

Related reference:
. I”END DECLARE SECTION” on page 542|

Chapter 1. Statements 99

BEGIN DECLARE SECTION

100

Related samples:

“advsql.sqb -- How to read table data using CASE (MF COBOL)”
“dtlob.sqc -- How to use the LOB data type (C)”

“spclient.sqc - Call various stored procedures (C)”

“tut_read.sqc -- How to read tables (C)”

“udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined
functions. (C)”

“dtlob.sqC -- How to use the LOB data type (C++)”
“spclient.sqC -- Call various stored procedures (C++)”
“tut_read.sqC -- How to read tables (C++)”

“udfemsrv.sqC - Call a variety of types of embedded SQL user-defined
functions. (C++)”

SQL Reference, Volume 2

CALL

CALL

The CALL statement calls a procedure.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following;:

¢ EXECUTE privilege on the procedure
* SYSADM or DBADM authority

If a matching procedure exists that the authorization ID of the statement is
not authorized to execute, an error (SQLSTATE 42501) is returned.

Syntax:

»»—CALL—procedure-name \\ J ><
expression)

(v
|:NULL

Description:

procedure-name
Specifies the procedure that is to be called. It must be a procedure that is
described in the catalog. The specific procedure to invoke is chosen using
procedure resolution. (For more details, see the “Notes” section of this
statement.)

expression or NULL
Each specification of expression or NULL is an argument of the CALL. The
nth argument of the CALL statement corresponds to the nth parameter
defined in the CREATE PROCEDURE statement for the procedure.

Each argument of the CALL must be compatible with the corresponding
parameter in the procedure definition as follows:
* IN parameter

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment
rules.

Chapter 1. Statements 101

CALL

102

* OUT parameter

— The argument must be a single host variable or parameter marker
(SQLSTATE 42886).

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the retrieval assignment
rules.

* INOUT parameter

— The argument must be a single host variable or parameter marker
(SQLSTATE 42886).

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment
rules on invocation and the retrieval assignment rules on return.

Notes:
* Procedure signatures:

A procedure is identified by its schema, a procedure name, and the number
of parameters. This is called a procedure signature, which must be unique
within the database. There can be more than one procedure with the same
name in a schema, provided that the number of parameters is different for
each procedure.

SQL path:

A procedure can be invoked by referring to a qualified name (schema and
procedure name), followed by an optional list of arguments enclosed by
parentheses. A procedure can also be invoked without the schema name,
resulting in a choice of possible procedures in different schemas with the
same number of parameters. In this case, the SQL path is used to assist in
procedure resolution. The SQL path is a list of schemas that is searched to
identify a procedure with the same name and number of parameters. For
static CALL statements, SQL path is specified using the FUNCPATH bind
option. For dynamic CALL statements, SQL path is the value of the
CURRENT PATH special register.

Procedure resolution:
Given a procedure invocation, the database manager must decide which of
the possible procedures with the same name to call. Procedure resolution is
done using the steps that follow.
1. Find all procedures from the catalog (SYSCAT.ROUTINES), such that all
of the following are true:
— For invocations where the schema name was specified (that is,
qualified references), the schema name and the procedure name
match the invocation name.

SQL Reference, Volume 2

CALL

— For invocations where the schema name was not specified (that is,
unqualified references), the procedure name matches the invocation
name, and has a schema name that matches one of the schemas in
the SQL path.

— The number of defined parameters matches the invocation.
— The invoker has the EXECUTE privilege on the procedure.
2. Choose the procedure whose schema is earliest in the SQL path.

If there are no candidate procedures remaining after step 1, an error is
returned (SQLSTATE 42884).

Retrieving the RETURN_STATUS from an SQL procedure:

If an SQL procedure successfully issues a RETURN statement with a status
value, this value is returned in the first SQLERRD field of the SQLCA. If
the CALL statement is issued in an SQL procedure, use the GET
DIAGNOSTICS statement to retrieve the RETURN_STATUS value. The
value is —1 if the SQLSTATE indicates an error. The values is 0 if no error is
returned and the RETURN statement was not specified in the procedure.

Returning result sets from procedures:

If the calling program is written using CLI, JDBC, or SQLjj, or the caller is
an SQL procedure, result sets can be returned directly to the caller. The
procedure indicates that a result set is to be returned by declaring a cursor
on that result set, opening a cursor on the result set, and leaving the cursor
open when exiting the procedure.

At the end of a procedure:

— For every cursor that has been left open, a result set is returned to the
caller or (for WITH RETURN TO CLIENT cursors) directly to the client.

— Only unread rows are passed back. For example, if the result set of a
cursor has 500 rows, and 150 of those rows have been read by the
procedure at the time the procedure is terminated, rows 151 through 500
will be returned to the caller or application (as appropriate).

If the procedure was invoked from CLI or JDBC, and more than one cursor
is left open, the result sets can only be processed in the order in which the
cursors were opened.

Improving performance:

The values of all arguments are passed from the application to the
procedure. To improve the performance of this operation, host variables
that correspond to OUT parameters and have lengths of more than a few
bytes should be set to NULL before the CALL statement is executed.

Nesting CALL statements:

Procedures can be called from routines as well as application programs.
When a procedure is called from a routine, the call is considered to be
nested.

Chapter 1. Statements 103

CALL

104

If a procedure returns any query result sets, the result sets are returned as

follows:

— RETURN TO CALLER result sets are visible only to the program that is
at the previous nesting level.

— RETURN TO CLIENT results sets are visible only if the procedure was
invoked from a set of nested procedures. If a function or method occurs
anywhere in the call chain, the result set is not visible. If the result set is
visible, it is only visible to the client application that made the initial
procedure call.

Consider the following example:

Client program:
EXEC SQL CALL PROCA;

PROCA:
EXEC SQL CALL PROCB;

PROCB:

EXEC SQL DECLARE Bl CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE B2 CURSOR WITH RETURN TO CALLER ...;
EXEC SQL DECLARE B3 CURSOR FOR SELECT UDFA FROM T1;

UDFA:
EXEC SQL CALL PROCC;

PROCC:
EXEC SQL DECLARE C1 CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CALLER ...;

From procedure PROCB:

— Cursor Bl is visible in the client application, but not visible in procedure
PROCA.

— Cursor B2 is visible in PROCA, but not visible to the client.

From procedure PROCC:

— Cursor C1 is visible to neither UDFA nor to the client application.
(Because UDFA appears in the call chain between the client and PROCC,
the result set is not returned to the client.)

— Cursor C2 is visible in UDFA, but not visible to any of the higher
procedures.

Nesting procedures within functions or methods:

When a procedure is called from a function or method, there are additional

restrictions on the statements that may be issued from the procedure.

Specifically:

— The procedure may not issue COMMIT or ROLLBACK unit of work
statements.

SQL Reference, Volume 2

CALL

— The procedure has the same table access restrictions as the invoking
function or method.

— RETURN TO CLIENT result sets will not be visible to the client.
— Savepoints defined before the function or method was invoked will not

be visible to the procedure, and savepoints defined inside the procedure
will not be visible outside the function or method.

* Compatibilities:
— There is an older form of the CALL statement that can be embedded in
applications by precompiling the application with the

CALL_RESOLUTION DEFERRED option. This option is not available for
SQL procedures.

Examples:
Example 1:

A Java procedure is defined in the database using the following statement:

CREATE PROCEDURE PARTS ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)
EXTERNAL NAME 'parts!onhand'
LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL;

A Java application calls this procedure using the following code fragment:

CallableStatement stpCall;

String sql = "CALL PARTS_ON_HAND (?, ?, ?)";

stpCall = con.prepareCall(sql); /*con is the connection */
stpCall.setInt(1, hvPartnum);

stpCall.setBigDecimal (2, hvCost);

stpCall.setInt(3, hvQuantity);

stpCall.registerOutParameter(2, Types.DECIMAL, 2);
stpCall.registerQutParameter(3, Types.INTEGER);

stpCall.execute();

hvCost = stpCall.getBigDecimal(2);
hvQuantity = stpCall.getInt(3);

This application code fragment will invoke the Java method onhand in class
parts, because the procedure name specified on the CALL statement is found
in the database and has the external name parts!onhand.

Chapter 1. Statements 105

CALL

Example 2:

There are six FOO procedures, in four different schemas, registered as follows
(note that not all required keywords appear):

CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC F00_1 ...

CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC F00 2 ...
CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC F00_3 ...

CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIFIC FOO 4 ...

CREATE PROCEDURE CAESAR.FOO (INT, INT) SPECIFIC FOO 5 ...

CREATE PROCEDURE NERO.FOO (INT,INT) SPECIFIC FO0 6 ...

The procedure reference is as follows (where I1 and 12 are INTEGER values):
CALL FOO(I1, 1I2)

Assume that the application making this reference has an SQL path
established as:

"JULIUS", "AUGUSTUS", "CAESAR"
Following through the algorithm...

The procedure with specific name FOO_6 is eliminated as a candidate,
because the schema "NERO” is not included in the SQL path. FOO_1, FOO_3,
and FOO_4 are eliminated as candidates, because they have the wrong
number of parameters. The remaining candidates are considered in order, as
determined by the SQL path. Note that the types of the arguments and
parameters are ignored. The parameters of FOO_5 exactly match the
arguments in the CALL, but FOO_2 is chosen because "AUGUSTUS" appears
before "CAESAR" in the SQL path.

Related reference:

* “CURRENT PATH special register” in the SQL Reference, Volume 1

* “CALL invoked from a compiled statement” in the SQL Reference, Volume 1
* “Assignments and comparisons” in the SQL Reference, Volume 1

Related samples:

* “outcli.sqb -- Call stored procedures using the SQLDA structure (MF
COBOL)”

* “spclient.c -- Call various stored procedures (CLI)”
* “spclient.sqc - Call various stored procedures (C)”
* “spclient.sqC -- Call various stored procedures (C++)”

* “SpClient.sqlj -- Call a variety of types of stored procedures from
SpServer.sqlj (SQLj)”

106 SQL Reference, Volume 2

CLOSE

CLOSE

The CLOSE statement closes a cursor. If a result table was created when the
cursor was opened, that table is destroyed.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that cannot be dynamically
prepared.

Authorization:

None required. For the authorization required to use a cursor, see “DECLARE
CURSOR”.

Syntax:

»>—CLOSE—cursor-name |_ _| >
WITH RELEASE

Description:

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the
CLOSE statement is executed, the cursor must be in the open state.

WITH RELEASE
The release of all read locks that have been held for the cursor is
attempted. Note that not all of the read locks are necessarily released;
these locks may be held for other operations or activities.

Notes:

* At the end of a unit of work, all cursors that belong to an application
process and that were declared without the WITH HOLD option are
implicitly closed.

* The WITH RELEASE clause has no effect when closing cursors defined in
functions or methods. The clause also has no effect when closing cursors
defined in stored procedures called from functions or methods.

* The WITH RELEASE clause has no effect for cursors that are operating
under isolation levels CS or UR. When specified for cursors that are
operating under isolation levels RS or RR, WITH RELEASE terminates
some of the guarantees of those isolation levels. Specifically, if the cursor is

Chapter 1. Statements 107

CLOSE

opened again, an RS cursor may experience the nonrepeatable read’
phenomenon and an RR cursor may experience either the ‘nonrepeatable
read” or ‘phantom’ phenomenon.

If a cursor that was originally either RR or RS is reopened after being
closed using the WITH RELEASE clause, new read locks will be acquired.

* Special rules apply to cursors within a stored procedure that have not been
closed before returning to the calling program.

* While a cursor is open (that is, it has not been closed yet), any changes to
sequence values as a result of statements involving that cursor (for
example, a FETCH or an UPDATE using the cursor that includes a
NEXTVAL expression for a sequence) will not result in an update to
PREVVAL for those sequences as seen by that cursor. The PREVVAL values
for these affected sequences are updated when the cursor is closed.

Example:

A cursor is used to fetch one row at a time into the C program variables dnum,
dname, and mnum. Finally, the cursor is closed. If the cursor is reopened, it is
again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM TDEPT
WHERE ADMRDEPT = 'A0O';

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

}
EXEC SQL CLOSE C1;

Related reference:

* I"CALL” on page 101

* ['DECLARE CURSOR” on page 482

* “Comparison of isolation levels” in the SQL Reference, Volume 1

Related samples:

* “dynamic.sqb -- How to update table data with cursor dynamically (MF
COBOL)”

* “tut_mod.sqc -- How to modify table data (C)”

* “tut_read.sqc -- How to read tables (C)”

* “tut_mod.sqC -- How to modify table data (C++)”
* “tut_read.sqC -- How to read tables (C++)”

108 SQL Reference, Volume 2

COMMENT

COMMENT

The COMMENT statement adds or replaces comments in the catalog
descriptions of various objects.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges that must be held by the authorization ID of the COMMENT
statement must include one of the following:

* SYSADM or DBADM

¢ definer of the object (underlying table for column or constraint) as recorded
in the DEFINER column of the catalog view for the object (OWNER column
for a schema)

* ALTERIN privilege on the schema (applicable only to objects allowing more
than one-part names)

¢ CONTROL privilege on the object (applicable to index, package, table and
view objects only)

¢ ALTER privilege on the object (applicable to table objects only)

Note that for table space or database partition group, the authorization ID
must have SYSADM or SYSCTRL authority.

Syntax:

»»>—COMMENT ON objects '—IS—string-constant ><
table-name (—'column—name—IS—strl‘ng—constantL)—‘
view-name——l_

objects:

Chapter 1. Statements 109

COMMENT

110

F—ALIAS—alias-name

—COLUMN—[tab le-name. column-name
view-name. column—name—I
—CONSTRAINT—table-name. constraint-name

—FUNCTION—function-name
L)

—

Y data-type

—SPECIFIC FUNCTION—specific-name

—FUNCTION MAPPING—function-mapping-name
(1)

—INDEX—index-name

—NICKNAME—nickname
—DATABASE PARTITION GROUP—db-partition-group-name

—PACKAGE |_ _| package-id
schema-name.

I:VERSION] J
version-id

—PROCEDURE—procedure-name
L, u

Y data-type
—SPECIFIC PROCEDURE—specific-name

—SCHEMA—schema-name

—SERVER—server-name

—SERVER OPTION—server—option—name—FOR—I remote-server

—TABLE—[tabZe-namc
view—nume—I

—TABLESPACE—tablespace-name
—TRIGGER—trigger-name

TYPE—type-name
(2)

|\DISTINCT

—TYPE MAPPING—type-mapping-name
'—WRAPPER—wrapper-name

remote-server:

SERVER—server-name

TYPE—server-type
I—VERSION—| server-version i

server-version:

I—WRAPPER—wrupper-name—l

| version B
.—releaseﬁ
.—mod-

version-string-constant

SQL Reference, Volume 2

COMMENT

Notes:

1 Index-name can be the name of either an index or an index specification.
2 The keyword DATA can be used as a synonym for DISTINCT.
Description:

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The alias-name
must identify an alias that is described in the catalog (SQLSTATE 42704).
The comment replaces the value of the REMARKS column of the
SYSCAT.TABLES catalog view for the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Indicates a comment will be added or replaced for a column. The
table-name.column-name or view-name.column-name combination must
identify a column and table combination that is described in the catalog
(SQLSTATE 42704). The comment replaces the value of the REMARKS
column of the SYSCAT.COLUMNS catalog view for the row that describes
the column.

A comment cannot be made on a column of an inoperative view.
(SQLSTATE 51024).

CONSTRAINT table-name.constraint-name
Indicates a comment will be added or replaced for a constraint. The
table-name.constraint-name combination must identify a constraint and the
table that it constrains; they must be described in the catalog (SQLSTATE
42704). The comment replaces the value of the REMARKS column of the
SYSCAT.TABCONST catalog view for the row that describes the
constraint.

FUNCTION
Indicates a comment will be added or replaced for a function. The
function instance specified must be a user-defined function or function
template described in the catalog.

There are several different ways available to identify the function instance:

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly
one function with the function-name. The function thus identified may
have any number of parameters defined for it. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier
for unqualified object names. If no function by this name exists in the
named or implied schema, an error (SQLSTATE 42704) is raised. If
there is more than one specific instance of the function in the named
or implied schema, an error (SQLSTATE 42725) is raised.

Chapter 1. Statements 111

COMMENT

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function
to be commented upon. The function selection algorithm is not used.

function-name
Gives the function name of the function to be commented upon.
In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In
static SQL statements the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names.

(data-type,...)
Must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number
of data types, and the logical concatenation of the data types is
used to identify the specific function for which to add or replace
the comment.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE FUNCTION
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0 <n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

(Note that the FOR BIT DATA attribute is not considered part of
the signature for matching purposes. So, for example, a CHAR
FOR BIT DATA specified in the signature would match a function
defined with CHAR only, and vice versa.)

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Indicates that comments will be added or replaced for a function (see
FUNCTION for other methods of identifying a function). Identifies the
particular user-defined function that is to be commented upon, using

112 SQL Reference, Volume 2

COMMENT

the specific name either specified or defaulted to at function creation
time. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static
SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied
schema; otherwise, an error (SQLSTATE 42704) is raised.

It is not possible to comment on a function that is in the SYSIBM,
SYSFUN, or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.ROUTINES catalog view for the row that describes the function.

FUNCTION MAPPING function-mapping-name
Indicates a comment will be added or replaced for a function mapping.
The function-mapping-name must identify a function mapping that is
described in the catalog (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.FUNCMAPPINGS catalog
view for the row that describes the function mapping.

INDEX index-name
Indicates a comment will be added or replaced for an index or index
specification. The index-name must identify either a distinct index or an
index specification that is described in the catalog (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the
SYSCAT.INDEXES catalog view for the row that describes the index or
index specification.

NICKNAME nickname
Indicates a comment will be added or replaced for a nickname. The
nickname must be a nickname that is described in the catalog (SQLSTATE
42704). The comment replaces the value for the REMARKS column of the
SYSCAT.TABLES catalog view for the row that describes the nickname.

DATABASE PARTITION GROUP db-partition-group-name
Indicates a comment will be added or replaced for a database partition
group. The db-partition-group-name must identify a distinct database
partition group that is described in the catalog (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the
SYSCAT.DBPARTITIONGROUPS catalog view for the row that describes
the database partition group.

PACKAGE schema-name.package-id
Indicates that a comment will be added or replaced for a package. If a
schema name is not specified, the package ID is implicitly qualified by the
default schema. The schema name and package ID, together with the
implicitly or explicitly specified version ID, must identify a package that

Chapter 1. Statements 113

COMMENT

is described in the catalog (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.PACKAGES catalog view
for the row that describes the package.

VERSION version-id

Identifies which package version is to be commented on. If a value is
not specified, the version defaults to the empty string. If multiple
packages with the same package name but different versions exist,
only one package version can be commented on in one invocation of
the COMMENT statement.

PROCEDURE
Indicates a comment will be added or replaced for a procedure. The
procedure instance specified must be a stored procedure described in the
catalog.

There are several different ways available to identify the procedure
instance:

PROCEDURE procedure-name

Identifies the particular procedure, and is valid only if there is exactly
one procedure with the procedure-name in the schema. The procedure
thus identified may have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. If no procedure by
this name exists in the named or implied schema, an error (SQLSTATE
42704) is raised. If there is more than one specific instance of the
procedure in the named or implied schema, an error (SQLSTATE
42725) is raised.

PROCEDURE procedure-name (data-type,...)

This is used to provide the procedure signature, which uniquely
identifies the procedure to be commented upon.

procedure-name
Gives the procedure name of the procedure to be commented
upon. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object
name. In static SQL statements the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified object
names.

(data-type,...)

Must match the data types that were specified on the CREATE
PROCEDURE statement in the corresponding position. The

114 SQL Reference, Volume 2

COMMENT

number of data types, and the logical concatenation of the data
types is used to identify the specific procedure for which to add
or replace the comment.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE PROCEDURE
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Indicates that comments will be added or replaced for a procedure
(see PROCEDURE for other methods of identifying a procedure).
Identifies the particular stored procedure that is to be commented
upon, using the specific name either specified or defaulted to at
procedure creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names. The specific-name must identify a specific
procedure instance in the named or implied schema; otherwise, an
error (SQLSTATE 42704) is raised.

It is not possible to comment on a procedure that is in the SYSIBM,
SYSFUN, or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.ROUTINES catalog view for the row that describes the procedure.

SCHEMA schema-name
Indicates a comment will be added or replaced for a schema. The
schema-name must identify a schema that is described in the catalog

Chapter 1. Statements 115

COMMENT

(SQLSTATE 42704). The comment replaces the value of the REMARKS
column of the SYSCAT.SCHEMATA catalog view for the row that
describes the schema.

SERVER server-name
Indicates a comment will be added or replaced for a data source. The
server-name must identify a data source that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.SERVERS catalog view for the row that describes
the data source.

SERVER OPTION server-option-name FOR remote-server
Indicates a comment will be added or replaced for a server option.

server-option-name
Identifies a server option. This option must be one that is described in
the catalog (SQLSTATE 42704). The comment replaces the value for
the REMARKS column of the SYSCAT.SERVEROPTIONS catalog view
for the row that describes the server option.

remote-server
Describes the data source to which the server-option applies.

SERVER server-name
Names the data source to which the server-option applies. The
server-name must identify a data source that is described in the
catalog.

TYPE server-type
Specifies the type of data source—for example, DB2 Universal
Database for OS/390 or Oracle—to which the server-option applies.
The server-type can be specified in either lower- or uppercase; it
will be stored in uppercase in the catalog.

VERSION
Specifies the version of the data source identified by server-name.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by
version. release must be an integer.

mod
Specifies the number of the modification of the release
denoted by release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’);

116 SQL Reference, Volume 2

COMMENT

or it can be the concatenated values of version, release, and, if
applicable, mod (for example, ‘8.0.3").

WRAPPER wrapper-name
Identifies the wrapper that is used to access the data source
referenced by server-name.

TABLE table-name or view-name
Indicates a comment will be added or replaced for a table or view. The
table-name or view-name must identify a table or view (not an alias or
nickname) that is described in the catalog (SQLSTATE 42704) and must
not identify a declared temporary table (SQLSTATE 42995). The comment
replaces the value for the REMARKS column of the SYSCAT.TABLES
catalog view for the row that describes the table or view.

TABLESPACE tablespace-name
Indicates a comment will be added or replaced for a table space. The
tablespace-name must identify a distinct table space that is described in the
catalog (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.TABLESPACES catalog view for the
row that describes the tablespace.

TRIGGER trigger-name
Indicates a comment will be added or replaced for a trigger. The
trigger-name must identify a distinct trigger that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.TRIGGERS catalog view for the row that describes
the trigger.

TYPE type-name
Indicates a comment will be added or replaced for a user-defined type.
The type-name must identify a user-defined type that is described in the
catalog (SQLSTATE 42704). If DISTINCT is specified, type-name must
identify a distinct type that is described in the catalog (SQLSTATE 42704).
The comment replaces the value of the REMARKS column of the
SYSCAT.DATATYPES catalog view for the row that describes the
user-defined type.

In dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names.

TYPE MAPPING type-mapping-name
Indicates a comment will be added or replaced for a user-defined data
type mapping. The type-mapping-name must identify a data type mapping
that is described in the catalog (SQLSTATE 42704). The comment replaces
the value for the REMARKS column of the SYSCAT.TYPEMAPPINGS
catalog view for the row that describes the mapping.

Chapter 1. Statements 117

COMMENT

WRAPPER wrapper-name
Indicates a comment will be added or replaced for a wrapper. The
wrapper-name must identify a wrapper that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.WRAPPERS catalog view for the row that
describes the wrapper.

IS string-constant
Specifies the comment to be added or replaced. The string-constant can be

any character string constant of up to 254 bytes. (Carriage return and line

feed each count as 1 byte.)

table-name | view-name ({ column-name IS string-constant } ...)
This form of the COMMENT statement provides the ability to specify
comments for multiple columns of a table or view. The column names
must not be qualified, each name must identify a column of the specified

table or view, and the table or view must be described in the catalog. The

table-name cannot be a declared temporary table (SQLSTATE 42995).

A comment cannot be made on a column of an inoperative view
(SQLSTATE 51024).

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

Examples:

Example 1: Add a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE
IS 'Reflects first quarter reorganization'

Example 2: Add a comment for the EMP_VIEW1 view.

COMMENT ON TABLE EMP_VIEW1
IS 'View of the EMPLOYEE table without salary information'

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE
table.

COMMENT ON COLUMN EMPLOYEE.EDLEVEL
IS 'highest grade Tevel passed in school'

Example 4: Add comments for two different columns of the EMPLOYEE table.

COMMENT ON EMPLOYEE
(WORKDEPT IS 'see DEPARTMENT table for names',
EDLEVEL IS 'highest grade Tevel passed in school')

118 SQL Reference, Volume 2

COMMENT

Example 5: Pellow wants to comment on the CENTRE function, which he
created in his PELLOW schema, using the signature to identify the specific
function to be commented on.

COMMENT ON FUNCTION CENTRE (INT,FLOAT)
IS 'Frank''s CENTRE fctn, uses Chebychev method'

Example 6: McBride wants to comment on another CENTRE function, which
she created in the PELLOW schema, using the specific name to identify the
function instance to be commented on:

COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS

"Louise''s most triumphant CENTRE function, uses the
Brownian fuzzy-focus technique'

Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM
schema, where it is known that there is only one function with that name:

COMMENT ON FUNCTION CHEM.ATOMIC WEIGHT
IS 'takes atomic nbr, gives atomic weight'

Example 8: Eigler wants to comment on the SEARCH procedure, which he
created in his EIGLER schema, using the signature to identify the specific
procedure to be commented on.

COMMENT ON PROCEDURE SEARCH (CHAR,INT)
IS 'Frank''s mass search and replace algorithm'

Example 9: Macdonald wants to comment on another SEARCH function,
which he created in the EIGLER schema, using the specific name to identify
the procedure instance to be commented on:

COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS
'"Patrick''s mass search and destroy algorithm'

Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema,
where it is known that there is only one procedure with that name:

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
IS 'Calculations modelling osmosis'

Example 11: Comment on an index specification named INDEXSPEC.

COMMENT ON INDEX INDEXSPEC
IS 'An index specification that indicates to the optimizer
that the table referenced by nickname NICK1 has an index.'

Example 12: Comment on the wrapper whose default name is NETS.

COMMENT ON WRAPPER NET8
IS 'The wrapper for data sources associated with
Oracle's Net8 client software.'

Chapter 1. Statements 119

COMMIT

COMMIT

The COMMIT statement terminates a unit of work and commits the database
changes that were made by that unit of work.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization:

None required.

Syntax:

WORK
»>—COMMIT |_ —l ><

Description:

The unit of work in which the COMMIT statement is executed is terminated
and a new unit of work is initiated. All changes made by the following
statements executed during the unit of work are committed: ALTER,
COMMENT ON, CREATE, DELETE, DROP, GRANT, INSERT, LOCK TABLE,
REVOKE, SET INTEGRITY, SET transition-variable, and UPDATE.

The following statements, however, are not under transaction control and
changes made by them are independent of the COMMIT statement:

* SET CONNECTION

» SET CURRENT DEFAULT TRANSFORM GROUP
* SET CURRENT DEGREE

* SET CURRENT EXPLAIN MODE

» SET CURRENT EXPLAIN SNAPSHOT

* SET CURRENT PACKAGESET

* SET CURRENT QUERY OPTIMIZATION

* SET CURRENT REFRESH AGE

* SET EVENT MONITOR STATE

* SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction
control, the passthru session initiated by the statement is under
transaction control.

120 SQL Reference, Volume 2

COMMIT

* SET PATH
* SET SCHEMA
e SET SERVER OPTION

All locks acquired by the unit of work subsequent to its initiation are released,
except necessary locks for open cursors that are declared WITH HOLD.All
open cursors not defined WITH HOLD are closed. Open cursors defined
WITH HOLD remain open, and the cursor is positioned before the next
logical row of the result table. (A FETCH must be performed before a
positioned UPDATE or DELETE statement is issued.) All LOB locators are
freed. Note that this is true even when the locators are associated with LOB
values retrieved via a cursor that has the WITH HOLD property.

All savepoints set within the transaction are released.

Notes:

* It is strongly recommended that each application process explicitly ends its
unit of work before terminating. If the application program ends normally
without a COMMIT or ROLLBACK statement then the database manager
attempts a commit or rollback depending on the application environment.

¢ For information on the impact of COMMIT on cached dynamic SQL
statements, see “EXECUTE".

* For information on potential impacts of COMMIT on declared temporary
tables, see “DECLARE GLOBAL TEMPORARY TABLE”.

Example:

Commit alterations to the database made since the last commit point.
COMMIT WORK

Related reference:
« ['EXECUTE” on page 544|
. I”DECLARE GLOBAL TEMPORARY TABLE” on page 488|

Related samples:

* “dynamic.sqb -- How to update table data with cursor dynamically (MF
COBOL)”

* “tbconstr.sqc -- How to create, use, and drop constraints (C)”

* “tbsavept.sqc -- How to use external savepoints (C)”

¢ “tut_mod.sqc -- How to modify table data (C)”

¢ “tut_use.sqc -- How to modify a database (C)”

* “tbconstr.sqC -- How to create, use, and drop constraints (C++)”

Chapter 1. Statements 121

COMMIT

* “tut_mod.sqC -- How to modify table data (C++)”
* “tut_use.sqC -- How to modify a database (C++)”

122 SQL Reference, Volume 2

Compound SQL (Dynamic)

Compound SQL (Dynamic)

A compound statement groups other statements together into an executable
block. SQL variables can be declared within a dynamically prepared atomic
compound statement.

Invocation:

This statement can be embedded in a trigger, SQL function, or SQL method,
or issued through the use of dynamic SQL statements. It is an executable
statement that can be dynamically prepared.

Authorization:

No privileges are required to invoke a dynamic compound statement.
However, the authorization ID of the compound statement must hold the
necessary privileges to invoke the SQL statements embedded in the
compound statement.

Syntax:

dynamic-compound-statement

»>

BEGIN ATOMIC >

o il
label:

Y 1 SQL-variable-declaration :
I—l condition-declaration ’—’—,7

»—Y_SQL-procedure-statement—; END B a ><
label

SQL-variable-declaration:

l—DEFAULT NULL:

—DECLARE—"-SQL-variable-name data-type

|—DEFAU LT—default-values—

condition-declaration:

|—DECLARE—condi tion-name—CONDITION—FOR >

Chapter 1. Statements 123

Compound SQL (Dynamic)

VALUE
|—SQLSTATE4|7—\I—‘

string-constant

Notes:

1

A label can only be specified when the statement is in a function,
method, or trigger definition.

Description:

label

Defines the label for the code block. If the beginning label is specified, it
can be used to qualify SQL variables declared in the dynamic compound
statement and can also be specified on a LEAVE statement. If the ending
label is specified, it must be the same as the beginning label.

ATOMIC
ATOMIC indicates that, if an error occurs in the compound statement, all
SQL statements in the compound statement will be rolled back and any
remaining SQL statements in the compound statement are not processed.

SQL-procedure-statement
The following list of SQL-control-statements can be used within the
dynamic compound statement:

FOR Statement

GET DIAGNOSTICS Statement
IF Statement

ITERATE Statement

LEAVE Statement

SIGNAL Statement

WHILE Statement

The SQL statements that can be issued are:

fullselect (A common-table-expression can precede the fullselect.)
Searched UPDATE

Searched DELETE

INSERT

SET variable statement

(Searched UPDATE, searched DELETE, and INSERT on nicknames inside
compound SQL is not supported.)

SQL-variable-declaration
Declares a variable that is local to the dynamic compound statement.

124 SQL Reference, Volume 2

Compound SQL (Dynamic)

SQL-variable-name
Defines the name of a local variable. DB2 converts all SQL variable
names to uppercase. The name cannot:

* be the same as another SQL variable within the compound
statement

* be the same as a parameter name

If an SQL statement contains an identifier with the same name as an
SQL variable and a column reference, DB2 interprets the identifier as a
column.

data-type
Specifies the data type of the variable.

DEFAULT default-values or NULL
Defines the default for the SQL variable. The variable is initialized
when the dynamic compound statement is called. If a default value is
not specified, the variable is initialized to NULL.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be
unique within the procedure body and can be referenced only within
the compound statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with the condition. The
string-constant must be specified as five characters enclosed in single
quotes, and cannot be "00000".

Notes:

* Dynamic compound statements are compiled by DB2 as one single
statement. This statement is effective for short scripts involving little control
tflow logic but significant dataflow. For larger constructs with requirements
for nested complex control flow or condition handling, a better choice is to
use SQL procedures. For more details on using SQL procedures, see
“CREATE PROCEDURE”.

Examples:
Example 1:

This example illustrates how inline SQL PL can be used in a data
warehousing scenario for data cleansing.

Chapter 1. Statements 125

Compound SQL (Dynamic)

126

The example introduces three tables. The "target” table contains the cleansed
data. The "except” table stores rows that cannot be cleansed (exceptions) and
the "source” table contains the raw data to be cleansed.

A simple SQL function called "discretize” is used to classify and modify the
data. It returns NULL for all bad data. The Dynamic Compound statement
then cleanses the data. It walks all rows of the source table in a FOR-loop and
decides whether the current row gets inserted into the "target” or the "except”
table, depending on the result of the "discretize” function. More elaborate
mechanisms (multistage cleansing) are possible with this technique.

The same code can be written using an SQL Procedure or any other procedure
or application in a host language. However, the dynamic compound statement
offers a unique advantage in that the FOR-loop does not open a cursor and
the single row inserts are not really single row inserts. In fact, the logic is
effectively a multi-table insert from a shared select.

This is achieved by compilation of the dynamic compound as a single
statement. Similar to a view whose body is integrated into the query that uses
it and then is compiled and optimized as a whole within the query context,
the DB2 optimizer compiles and optimizes both the control and data flow
together. The whole logic is therefore executed within DB2’s runtime. No data
is moved outside of the core DB2 engine, as would be done for a stored
procedure.

The first step is to create the required tables:

CREATE TABLE target
(pk INTEGER NOT NULL
PRIMARY KEY, cl INTEGER)

This creates a table called TARGET to contain the cleansed data.

CREATE TABLE except
(pk INTEGER NOT NULL
PRIMARY KEY, cl INTEGER)

This creates a table called EXCEPT to contain the exceptions.

CREATE TABLE source
(pk INTEGER NOT NULL
PRIMARY KEY, cl INTEGER)

This creates a table called SOURCE to hold the data that is to be cleansed.

Next, we create a "discretize” function to cleanse the data by throwing out all
values outside [0..1000] and aligning them to steps of 10.

SQL Reference, Volume 2

Compound SQL (Dynamic)

CREATE FUNCTION discretize(raw INTEGER) RETURNS INTEGER

RETURN CASE

WHEN raw < © THEN CAST(NULL AS INTEGER)

WHEN raw > 1000 THEN NULL
ELSE ((raw / 10) % 10) + 5
END

Then we insert the values:

INSERT INTO source (pk, cl)
VALUES (1, -5),
(2, NULL),
(3, 1200),
(4, 23),
(5, 10),
(6, 876)

Invoke the function:

BEGIN ATOMIC
FOR row AS

SELECT pk, cl, discretize(cl) AS d FROM source

DO
IF row.d is NULL THEN

INSERT INTO except VALUES(row.pk, row.cl);

ELSE

INSERT INTO target VALUES(row.pk, row.d);

END IF;
END FOR;
END

And test the results:

SELECT * FROM except ORDER BY 1
PK C1

3 1200
3 record(s) selected.

SELECT * FROM target ORDER BY 1
PK C1

4 25
5 15
6 875

3 record(s) selected.

The final step is to clean up:

DROP FUNCTION discretize
DROP TABLE source
DROP TABLE target
DROP TABLE except

Chapter 1. Statements 127

Compound SQL (Dynamic)

Related reference:
» I"'CREATE PROCEDURE” on page 296

Related samples:

» “dbinline.sqc -- How to use inline SQL Procedure Language (C)”

128 SQL Reference, Volume 2

Compound SQL (Embedded)

Compound SQL (Embedded)

Combines one or more other SQL statements (sub-statements) into an
executable block.

Invocation:

This statement can only be embedded in an application program. The entire
Compound SQL statement construct is an executable statement that cannot be
dynamically prepared. The statement is not supported in REXX.
Authorization:

None for the Compound SQL statement itself. The authorization ID of the

Compound SQL statement must have the appropriate authorization on all the
individual statements that are contained within the Compound SQL

statement.

Syntax:

»»—BEGIN COMPOUND ATOMIC STATIC >
[NOT ATOMICJ

|—STOP AFTER FIRST—host- variable—STATEMENTSJ qul -s tatement—;J

»—END COMPOUND e

Description:

ATOMIC
Specifies that, if any of the sub-statements within the Compound SQL
statement fail, then all changes made to the database by any of the
sub-statements, including changes made by successful sub-statements, are
undone.

NOT ATOMIC
Specifies that, regardless of the failure of any sub-statements, the
Compound SQL statement will not undo any changes made to the
database by the other sub-statements.

STATIC
Specifies that input variables for all sub-statements retain their original
value. For example, if

Chapter 1. Statements 129

Compound SQL (Embedded)

130

SELECT ... INTO :abc ...

is followed by:
UPDATE T1 SET C1 = 5 WHERE C2 = :abc

the UPDATE statement will use the value that :abc had at the start of the
execution of the Compound SQL statement, not the value that follows the
SELECT INTO.

If the same variable is set by more than one sub-statement, the value of
that variable following the Compound SQL statement is the value set by
the last sub-statement.

Note: Non-static behavior is not supported. This means that the
sub-statements should be viewed as executing non-sequentially and
sub-statements should not have interdependencies.

STOP AFTER FIRST
Specifies that only a certain number of sub-statements will be executed.

host-variable
A small integer that specifies the number of sub-statements to be
executed.

STATEMENTS
Completes the STOP AFTER FIRST host-variable clause.

sql-statement
All executable statements except the following can be contained within an
embedded static compound SQL statement:

CALL OPEN

CLOSE PREPARE

CONNECT RELEASE (Connection)
Compound SQL RELEASE SAVEPOINT
DESCRIBE ROLLBACK
DISCONNECT SAVEPOINT
EXECUTE IMMEDIATE SET CONNECTION
FETCH

Note: INSERT, UPDATE, and DELETE are not supported in compound
SQL for use with nicknames.

If a COMMIT statement is included, it must be the last sub-statement. If
COMMIT is in this position, it will be issued even if the STOP AFTER
FIRST host-variable STATEMENTS clause indicates that not all of the
sub-statements are to executed. For example, suppose COMMIT is the last

SQL Reference, Volume 2

Compound SQL (Embedded)

sub-statement in a compound SQL block of 100 sub-statements. If the
STOP AFTER FIRST STATEMENTS clause indicates that only 50
sub-statements are to be executed, then COMMIT will be the 51st
sub-statement.

An error will be returned if COMMIT is included when using CONNECT
TYPE 2 or running in an XA distributed transaction processing
environment (SQLSTATE 25000).

Rules:

* DB2 Connect does not support SELECT statements selecting LOB columns
in a compound SQL block.

* No host language code is allowed within a Compound SQL statement; that
is, no host language code is allowed between the sub-statements that make
up the Compound SQL statement.

¢ Only NOT ATOMIC Compound SQL statements will be accepted by DB2
Connect.

¢ Compound SQL statements cannot be nested.

¢ An Atomic Compound SQL statement cannot be issued inside a savepoint
(SQLSTATE 3B002).

* A prepared COMMIT statement is not allowed in an ATOMIC Compound
SQL statement

Notes:

One SQLCA is returned for the entire Compound SQL statement. Most of the
information in that SQLCA reflects the values set by the application server
when it processed the last sub-statement. For instance:

¢ The SQLCODE and SQLSTATE are normally those for the last
sub-statement (the exception is described in the next point).

* If a 'no data found' warning (SQLSTATE '02000") is returned, that warning
is given precedence over any other warning so that a WHENEVER NOT
FOUND exception can be acted upon. (This means that the SQLCODE,
SQLERRML, SQLERRMC, and SQLERRP fields in the SQLCA that is
eventually returned to the application are those from the sub-statement that
triggered the 'no data found' warning. If there is more than one no data
found' warning within the Compound SQL statement, the fields for the last
sub-statement will be the fields that are returned.)

* The SQLWARN indicators are an accumulation of the indicators set for all
sub-statements.

If one or more errors occurred during NOT ATOMIC Compound SQL

execution and none of these are of a serious nature, the SQLERRMC will
contain information on up to a maximum of seven of these errors. The first

Chapter 1. Statements 131

Compound SQL (Embedded)

132

token of the SQLERRMC will indicate the total number of errors that
occurred. The remaining tokens will each contain the ordinal position and the
SQLSTATE of the failing sub-statement within the Compound SQL statement.
The format is a character string of the form:

nnnXsssccccce

with the substring starting with X repeating up to six more times and the
string elements defined as follows.

nnn The total number of statements that produced errors. (If the number
would exceed 999, counting restarts at zero.) This field is left-justified
and padded with blanks.

X The token separator X'FF'.

sss The ordinal position of the statement that caused the error. (If the
number would exceed 999, counting restarts at zero.) For example, if
the first statement failed, this field would contain the number one
left-justified ('1).

cccce The SQLSTATE of the error.

The second SQLERRD field contains the number of statements that failed
(returned negative SQLCODEs).

The third SQLERRD field in the SQLCA is an accumulation of the number of
rows affected by all sub-statements.

The fourth SQLERRD field in the SQLCA is a count of the number of
successful sub-statements. If, for example, the third sub-statement in a
Compound SQL statement failed, the fourth SQLERRD field would be set to
2, indicating that 2 sub-statements were successfully processed before the
error was encountered.

The fifth SQLERRD field in the SQLCA is an accumulation of the number of
rows updated or deleted due to the enforcement of referential integrity
constraints for all sub-statements that triggered such constraint activity.

Examples:

Example 1: In a C program, issue a Compound SQL statement that updates
both the ACCOUNTS and TELLERS tables. If there is an error in any of the
statements, undo the effect of all statements (ATOMIC). If there are no errors,
commit the current unit of work.
EXEC SQL BEGIN COMPOUND ATOMIC STATIC
UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta
WHERE AID = :aid;
UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

SQL Reference, Volume 2

WHERE TID = :tid;
INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);

COMMIT;

END COMPOUND;

Compound SQL (Embedded)

Example 2: In a C program, insert 10 rows of data into the database. Assume
the host variable :nbr contains the value 10 and S1 is a prepared INSERT

statement. Further, assume that all the inserts should be attempted regardless
of errors (NOT ATOMIC).

EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST :nbr STATEMENTS

EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE

END COMPOUND;

S1
S1

S1

USING
USING
USING
USING
USING
USING
USING
USING
USING
USING

Related reference:

DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR

:*sqlda0;
:*xsqldal;
:*sqlda2;
:*xsqlda3;
:*sqldad;
:*xsqldab;
:*sqldab;
:*sqlda7;
:*xsqlda8;
:*sqlda9;

* [“Compound statement (Procedure)” on page 767

Related samples:

* “dbuse.sqc -- How to use a database (C)”

* “dbuse.sqC -- How to use a database (C++)”

Chapter 1. Statements 133

CONNECT (Type 1)

CONNECT (Type 1)

134

The CONNECT (Type 1) statement connects an application process to the
identified application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a
time. This is called the current server. A default application server may be
established when the application requester is initialized. If implicit connect is
available and an application process is started, it is implicitly connected to the
default application server. The application process can explicitly connect to a
different application server by issuing a CONNECT TO statement. A
connection lasts until a CONNECT RESET statement or a DISCONNECT
statement is issued or until another CONNECT TO statement changes the
application server.

Invocation:

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization:

The authorization ID of the statement must be authorized to connect to the
identified application server. Depending on the authentication setting for the
database, the authorization check may be performed by either the client or the
server. For a partitioned database, the user and group definitions must be
identical across partitions.

Syntax:

»»—CONNECT e

TO server-name _|
host-variable L‘ Tock-bTock ’J L‘ authorization ’J

RESET

(1)

authorization i

authorization:

I—USER aquthorization-name USING—[password
host—vuriable——l_ host-variable—l

SQL Reference, Volume 2

CONNECT (Type 1)

|—NEW

—[password—_l—CONFIRM—passwordJ
host-variable

lock-block:

|—IN SHARE MODE

|—IN EXCLUSIVE MODE
|—ON SINGLE DBPARTITIONNUM—|

Notes:

1

This form is only valid if implicit connect is enabled.

Description:

CONNECT (with no operand)

Returns information about the current server. The information is returned
in the SQLERRP field of the SQLCA as described in “Successful
Connection”.

If a connection state exists, the authorization ID and database alias are
placed in the SQLERRMC field of the SQLCA. If the authorization ID is
longer than 8 bytes, it will be truncated to 8 bytes, and the truncation will
be flagged in the SQLWARNO and SQLWARNT1 fields of the SQLCA, with
‘W' and 'A’, respectively. If the database configuration parameter
DYN_QUERY_MGMT is enabled, then the SQLWARNO and SQLWARNY
fields of the SQLCA will be flagged with 'W' and 'E', respectively.

If no connection exists and implicit connect is possible, then an attempt to
make an implicit connection is made. If implicit connect is not available,
this attempt results in an error (no existing connection). If no connection,
then the SQLERRMC field is blank.

The territory code and code page of the application server are placed in
the SQLERRMC field (as they are with a successful CONNECT TO
statement).

This form of CONNECT:

* Does not require the application process to be in the connectable state.
* If connected, does not change the connection state.

* If unconnected and implicit connect is available, a connection to the
default application server is made. In this case, the country/region code
and code page of the application server are placed in the SQLERRMC
field, like a successful CONNECT TO statement.

* If unconnected and implicit connect is not available, the application
process remains unconnected.

* Does not close cursors.

Chapter 1. Statements 135

CONNECT (Type 1)

136

TO server-name or host-variable

Identifies the application server by the specified server-name or a
host-variable which contains the server-name.

If a host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The server-name that is contained within the host-variable
must be left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application
server. It must be listed in the application requester’s local directory.

Note: DB2 UDB for OS/390 and z/OS supports a 16-byte location name,
and DB2 UDB for iSeries supports an 18-byte target database name.
DB2 Version 8 only supports the use of an 8-byte database alias
name on the SQL CONNECT statement. However, the database
alias name can be mapped to an 18-byte database name through
the Database Connection Service Directory.

When the CONNECT TO statement is executed, the application process
must be in the connectable state.

Successful Connection:

If the CONNECT TO statement is successful:

* All open cursors are closed, all prepared statements are destroyed, and
all locks are released from the previous application server.

* The application process is disconnected from its previous application
server, if any, and connected to the identified application server.

* The actual name of the application server (not an alias) is placed in the
CURRENT SERVER special register.

* Information about the application server is placed in the SQLERRP field
of the SQLCA. If the application server is an IBM product, the
information has the form pppvorrm, where:

— ppp identifies the product as follows:

- DSN for DB2 UDB for OS/390 and z/0OS
ARI for DB2 Server for VSE & VM
QSQ for DB2 UDB for iSeries

- SQL for DB2 UDB for UNIX and Windows
— wv is a two-digit version identifier, such as '08'

— rris a two-digit release identifier, such as '01'

— m is a one-digit modification level identifier, such as '0'.

SQL Reference, Volume 2

CONNECT (Type 1)

This release (Version 8) of DB2 UDB for UNIX and Windows is

identified as 'SQL08010'.

* The SQLERRMC field of the SQLCA is set to contain the following

values (separated by X'FF’)
1.

10.

the country/region code of the application server (or blanks if

using DB2 Connect),

the code page of the application server (or CCSID if using DB2

Connect),

the authorization ID (up to first 8 bytes only),

the database alias,

the platform type of the application server. Currently identified

values are:
Token
QAS
QDB2

QDB2/2
QDB2/6000
QDB2/HPUX
QDB2/LINUX
QDB2/NT

QDB2/SUN

QSQLDS/VM
QSQLDS/VSE

Server
DB2 Universal Database for iSeries

DB2 Universal Database for
0S/390 and z/0OS

DB2 Universal Database for OS/2
DB2 Universal Database for AIX
DB2 Universal Database for HP-UX
DB2 Universal Database for Linux

DB2 Universal Database for
Windows NT, 2000, and XP

DB2 Universal Database for Solaris
Operating System

DB2 Server for VM
DB2 Server for VSE

The agent ID. It identifies the agent executing within the database
manager on behalf of the application. This field is the same as the
agent_id element returned by the database monitor.

The agent index. It identifies the index of the agent and is used for

service.

Partition number. For a non-partitioned database, this is always 0,

if present.

The code page of the application client.

Number of partitions in a partitioned database. If the database
cannot be partitioned, the value is 0 (zero). Token is present only

with Version 5 or later.

Chapter 1. Statements 137

CONNECT (Type 1)

The SQLERRD(1) field of the SQLCA indicates the maximum expected
difference in length of mixed character data (CHAR data types) when
converted to the database code page from the application code page. A
value of 0 or 1 indicates no expansion; a value greater than 1 indicates
a possible expansion in length; a negative value indicates a possible
contraction.

The SQLERRD(2) field of the SQLCA indicates the maximum expected
difference in length of mixed character data (CHAR data types) when
converted to the application code page from the database code page. A
value of 0 or 1 indicates no expansion; a value greater than 1 indicates
a possible expansion in length; a negative value indicates a possible
contraction.

The SQLERRD(3) field of the SQLCA indicates whether or not the
database on the connection is updatable. A database is initially
updatable, but is changed to read-only if a unit of work determines the
authorization ID cannot perform updates. The value is one of:

— 1 - updatable

— 2 - read-only

The SQLERRD(4) field of the SQLCA returns certain characteristics of
the connection. The value is one of:

0- N/A (only possible if running from a down-level client which is
one phase commit and is an updater).

1- one-phase commit.

2- one-phase commit; read-only (only applicable to connections to

DRDA1 databases in TP Monitor environment).

3- two-phase commit.

The SQLERRD(5) field of the SQLCA returns the authentication type of
the connection. The value is one of:

0- Authenticated on the server.

1- Authenticated on the client.

2- Authenticated using DB2 Connect.

3- Authenticated using Distributed Computing Environment

security services.

255 - Authentication not specified.

The SQLERRD(6) field of the SQLCA returns the partition number of
the partition to which the connection was made if the database is
partitioned. Otherwise, a value of 0 is returned.

The SQLWARNT]1 field in the SQLCA will be set to 'A' if the
authorization ID of the successful connection is longer than 8 bytes.

138 SQL Reference, Volume 2

CONNECT (Type 1)

This indicates that truncation has occurred. The SQLWARNO field in the
SQLCA will be set to 'W' to indicate this warning,.

e The SQLWARNY field in the SQLCA will be set to 'E' if the database
configuration parameter DYN_QUERY_MGMT for the database is
enabled. The SQLWARNO field in the SQLCA will be set to 'W' to
indicate this warning.

Unsuccessful Connection:

If the CONNECT TO statement is unsuccessful:

¢ The SQLERRP field of the SQLCA is set to the name of the module at
the application requester that detected the error. The first three
characters of the module name identify the product.

 If the CONNECT TO statement is unsuccessful because the application
process is not in the connectable state, the connection state of the
application process is unchanged.

* If the CONNECT TO statement is unsuccessful because the server-name
is not listed in the local directory, an error message (SQLSTATE 08001)
is issued and the connection state of the application process remains
unchanged:

— If the application requester was not connected to an application
server then the application process remains unconnected.

— If the application requester was already connected to an application
server, the application process remains connected to that application
server. Any further statements are executed at that application server.

* If the CONNECT TO statement is unsuccessful for any other reason, the
application process is placed into the unconnected state.

IN SHARE MODE
Allows other concurrent connections to the database and prevents other
users from connecting to the database in exclusive mode.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations
at the application server, unless they have the same authorization ID as
the user holding the exclusive lock. This option is not supported by DB2
Connect.

ON SINGLE DBPARTITIONNUM
Specifies that the coordinator database partition is connected in
exclusive mode and all other database partitions are connected in
share mode. This option is only effective in a partitioned database.

RESET
Disconnects the application process from the current server. A commit

Chapter 1. Statements 139

CONNECT (Type 1)

140

operation is performed. If implicit connect is available, the application
process remains unconnected until an SQL statement is issued.

USER authorization-name/host-variable
Identifies the user ID trying to connect to the application server. If a
host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The user ID that is contained within the host-variable
must be left justified and must not be delimited by quotation marks.

USING password/host-variable
Identifies the password of the user ID trying to connect to the application
server. Password or host-variable may be up to 18 characters. If a host
variable is specified, it must be a character string variable with a length
attribute not greater than 18 and it must not include an indicator variable.

NEW password/host-variable CONFIRM password
Identifies the new password that should be assigned to the user ID
identified by the USER option. Password or host-variable may be up to 18
characters. If a host variable is specified, it must be a character string
variable with a length attribute not greater than 18 and it must not
include an indicator variable. The system on which the password will be
changed depends on how user authentication is set up.

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM
* It is good practice for the first SQL statement executed by an application
process to be the CONNECT TO statement.

* If a CONNECT TO statement is issued to the current application server
with a different user ID and password then the conversation is deallocated
and reallocated. All cursors are closed by the database manager (with the
loss of the cursor position if the WITH HOLD option was used).

* If a CONNECT TO statement is issued to the current application server
with the same user ID and password then the conversation is not
deallocated and reallocated. Cursors, in this case, are not closed.

* To use a multiple-partition database environment, the user or application
must connect to one of the partitions listed in the db2nodes.cfg file. You
should try to ensure that not all users use the same partition as the
coordinator partition.

Examples:

Example 1: In a C program, connect to the application server TOROLAB,
using database alias TOROLAB, user ID FERMAT, and password THEOREM.

SQL Reference, Volume 2

CONNECT (Type 1)
EXEC SQL CONNECT TO TOROLAB USER FERMAT USING THEOREM;

Example 2: In a C program, connect to an application server whose database
alias is stored in the host variable APP_SERVER (varchar(8)). Following a
successful connection, copy the 3-character product identifier of the
application server to the variable PRODUCT (char(3)).

EXEC SQL CONNECT TO :APP_SERVER;
if (strncmp(SQLSTATE, '00000',5))
strncpy (PRODUCT,sqlca.sqlerrp,3);

Related concepts:
+ “Distributed relational databases” in the SQL Reference, Volume 1
* “Data partitioning across multiple partitions” in the SQL Reference, Volume 1

Related samples:

* “advsql.sgb -- How to read table data using CASE (MF COBOL)”
* “dbmcon.sqc -- How to use multiple databases (C)”

¢ “dbmcon.sqC -- How to use multiple databases (C++)”

Chapter 1. Statements 141

CONNECT (Type 2)

CONNECT (Type 2)

142

The CONNECT (Type 2) statement connects an application process to the
identified application server and establishes the rules for application-directed
distributed unit of work. This server is then the current server for the process.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT
(Type 2) statement. Rather than repeating that material here, this section
describes only those elements of Type 2 that differ from Type 1.

Invocation:

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization:

The authorization ID of the statement must be authorized to connect to the
identified application server. Depending on the authentication setting for the
database, the authorization check may be performed by either the client or the
server. For a partitioned database, the user and group definitions must be
identical across partitions.

Syntax:

The selection between Type 1 and Type 2 is determined by precompiler
options. For an overview of these options, see “Distributed relational
databases”.

»»—CONNECT e

TO server-name _|
host-variable L‘ Tock-bTock ’J L‘ authorization ’J

RESET

(1)

authorization i

authorization:

—USER——authorization-name USING—[password
host—variable——l_ host-variable—l

SQL Reference, Volume 2

CONNECT (Type 2)

|—NEW

—[password—_l—CONFIRM—passwordJ
host-variable

lock-block:

|—IN SHARE MODE

|—IN EXCLUSIVE MODE

|—ON SINGLE DBPARTITIONNUM—|

Notes:

1

This form is only valid if implicit connect is enabled.

Description:

TO server-name/host-variable

The rules for coding the name of the server are the same as for Type 1.

If the SQLRULES(STD) option is in effect, the server-name must not
identify an existing connection of the application process, otherwise an
error (SQLSTATE 08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an
existing connection of the application process, that connection is made
current and the old connection is placed into the dormant state. That is,
the effect of the CONNECT statement in this situation is the same as that
of a SET CONNECTION statement.

For information about the specification of SQLRULES, see “Options that
Govern Distributed Unit of Work Semantics”.

Successful Connection

If the CONNECT TO statement is successful:

* A connection to the application server is either created (or made
non-dormant) and placed into the current and held states.

» If the CONNECT TO is directed to a different server than the current
server, then the current connection is placed into the dormant state.

* The CURRENT SERVER special register and the SQLCA are updated in
the same way as for CONNECT (Type 1).

Unsuccessful Connection

If the CONNECT TO statement is unsuccessful:

¢ No matter what the reason for failure, the connection state of the
application process and the states of its connections are unchanged.

Chapter 1. Statements 143

CONNECT (Type 2)

* As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the
SQLCA is set to the name of the module at the application requester or
server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and

USING
If a connection exists, Type 2 behaves like a Type 1. The authorization ID
and database alias are placed in the SQLERRMC field of the SQLCA. If a
connection does not exist, no attempt to make an implicit connection is
made and the SQLERRP and SQLERRMC fields return a blank.
(Applications can check if a current connection exists by checking these
fields.)

A CONNECT with no operand that includes USER and USING can still
connect an application process to a database using the DB2DBDFT
environment variable. This method is equivalent to a Type 2 CONNECT
RESET, but permits the use of a user ID and password.

RESET
Equivalent to an explicit connect to the default database if it is available.
If a default database is not available, the connection state of the
application process and the states of its connections are unchanged.

Availability of a default database is determined by installation options,
environment variables, and authentication settings.

Rules:

* As outlined in “Options that Govern Distributed Unit of Work Semantics”,
a set of connection options governs the semantics of connection
management. Default values are assigned to every preprocessed source file.
An application can consist of multiple source files precompiled with
different connection options.

Unless a SET CLIENT command or API has been executed first, the
connection options used when preprocessing the source file containing the
first SQL statement executed at run time become the effective connection
options.

If a CONNECT statement from a source file preprocessed with different
connection options is subsequently executed without the execution of any
intervening SET CLIENT command or API, an error (SQLSTATE 08001) is
returned. Note that once a SET CLIENT command or API has been
executed, the connection options used when preprocessing all source files in
the application are ignored.

Example 1 in the “Examples” section of this statement illustrates these
rules.

* Although the CONNECT TO statement can be used to establish or switch
connections, CONNECT TO with the USER/USING clause will only be
accepted when there is no current or dormant connection to the named

144 SQL Reference, Volume 2

CONNECT (Type 2)

server. The connection must be released before issuing a connection to the
same server with the USER/USING clause, otherwise it will be rejected
(SQLSTATE 51022). Release the connection by issuing a DISCONNECT
statement or a RELEASE statement followed by a COMMIT statement.

Notes:

* Implicit connect is supported for the first SQL statement in an application
with Type 2 connections. In order to execute SQL statements on the default
database, first the CONNECT RESET or the CONNECT USER/USING
statement must be used to establish the connection. The CONNECT
statement with no operands will display information about the current
connection if there is one, but will not connect to the default database if

there is no current connection.

Comparing Type 1 and Type 2 CONNECT Statements:

The semantics of the CONNECT statement are determined by the CONNECT
precompiler option or the SET CLIENT API (see “Options that Govern
Distributed Unit of Work Semantics”). CONNECT Type 1 or CONNECT Type
2 can be specified and the CONNECT statements in those programs are
known as Type 1 and Type 2 CONNECT statements, respectively. Their

semantics are described below:

Use of CONNECT TO:

Type 1

Type 2

Each unit of work can only establish
connection to one application server.

Each unit of work can establish connection
to multiple application servers.

The current unit of work must be
committed or rolled back before allowing

a connection to another application server.

The current unit of work need not be
committed or rolled back before
connecting to another application server.

The CONNECT statement establishes the
current connection. Subsequent SQL
requests are forwarded to this connection
until changed by another CONNECT.

Same as Type 1 CONNECT if establishing
the first connection. If switching to a
dormant connection and SQLRULES is set
to STD, then the SET CONNECTION
statement must be used instead.

Connecting to the current connection is
valid and does not change the current
connection.

Same as Type 1 CONNECT if the
SQLRULES precompiler option is set to
DB2. If SQLRULES is set to STD, then the
SET CONNECTION statement must be
used instead.

145

Chapter 1. Statements

CONNECT (Type 2)

146

Type 1

Type 2

Connecting to another application server
disconnects the current connection. The
new connection becomes the current
connection. Only one connection is
maintained in a unit of work.

Connecting to another application server
puts the current connection into the
dormant state. The new connection becomes
the current connection. Multiple
connections can be maintained in a unit of
work.

If the CONNECT is for an application
server on a dormant connection, it
becomes the current connection.

Connecting to a dormant connection using
CONNECT is only allowed if
SQLRULES(DB2) was specified. If
SQLRULES(STD) was specified, then the
SET CONNECTION statement must be
used instead.

SET CONNECTION statement is
supported for Type 1 connections, but the

only valid target is the current connection.

Use of CONNECT...USER...USING:

Type 1

SET CONNECTION statement is
supported for Type 2 connections to
change the state of a connection from
dormant to current.

Type 2

Connecting with the USER...USING
clauses disconnects the current connection
and establishes a new connection with the
given authorization name and password.

SQL Reference, Volume 2

Connecting with the USER/USING clause
will only be accepted when there is no
current or dormant connection to the same
named server.

CONNECT (Type 2)

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

Type 1

Type 2

CONNECT RESET can be used to
disconnect the current connection.

CONNECT RESET is equivalent to
connecting to the default application
server explicitly if one has been defined in
the system.

Connections can be disconnected by the
application at a successful COMMIT. Prior
to the commit, use the RELEASE
statement to mark a connection as
release-pending. All such connections will
be disconnected at the next COMMIT.

An alternative is to use the precompiler
options DISCONNECT(EXPLICIT),
DISCONNECT(CONDITIONAL),
DISCONNECT(AUTOMATIC), or the
DISCONNECT statement instead of the
RELEASE statement.

After using CONNECT RESET to
disconnect the current connection, if the
next SQL statement is not a CONNECT
statement, then it will perform an implicit
connect to the default application server if
one has been defined in the system.

CONNECT RESET is equivalent to an
explicit connect to the default application
server if one has been defined in the
system.

It is an error to issue consecutive
CONNECT RESETs.

It is an error to issue consecutive
CONNECT RESETs ONLY if
SQLRULES(STD) was specified because
this option disallows the use of
CONNECT to existing connection.

CONNECT RESET also implicitly commits
the current unit of work.

CONNECT RESET does not commit the
current unit of work.

If an existing connection is disconnected
by the system for whatever reasons, then
subsequent non-CONNECT SQL
statements to this database will receive an
SQLSTATE of 08003.

If an existing connection is disconnected
by the system, COMMIT, ROLLBACK,
and SET CONNECTION statements are
still permitted.

The unit of work will be implicitly
committed when the application process
terminates successfully.

Same as Type 1.

All connections (only one) are
disconnected when the application process
terminates.

All connections (current, dormant, and
those marked for release pending) are
disconnected when the application process
terminates.

Chapter 1. Statements 147

CONNECT (Type 2)

CONNECT Failures:

Type 1

Type 2

Regardless of whether there is a current
connection when a CONNECT fails (with
an error other than server-name not
defined in the local directory), the
application process is placed in the
unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

Examples:

Example 1:

If there is a current connection when a
CONNECT fails, the current connection is
unaffected.

If there was no current connection when
the CONNECT fails, then the program is
then in an unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

This example illustrates the use of multiple source programs (shown in the
boxes), some preprocessed with different connection options (shown above the
code), and one of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

exec sql CONNECT TO OTTAWA;
exec sql SELECT coll INTO :hvl
FROM tb11;

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)

exec sql CONNECT TO QUEBEC;
exec sql SELECT coll INTO :hvl
FROM tb12;

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)

SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT *

exec sql CONNECT TO LONDON;
exec sql SELECT coll INTO :hvl
FROM th13;

1 Note: not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

SQL Reference, Volume 2

CONNECT (Type 2)

exec sql CONNECT TO REGINA;
exec sql SELECT coll INTO :hvl
FROM th14;

If the application executes PGM1 then PGM2:

* connect to OTTAWA runs: connect=2, sqlrules=DB2,
disconnect=CONDITIONAL

* connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES
and DISCONNECT are different.

If the application executes PGM1 then PGM3:

¢ connect to OTTAWA runs: connect=2, sqlrules=DB2,
disconnect=CONDITIONAL

* connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT
statement.

If the application executes PGM1 then PGM4:

e connect to OTTAWA runs: connect=2, sqlrules=DB2,
disconnect=CONDITIONAL

 connect to REGINA runs: connect=2, sqlrules=DB2,
disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those
for PGM4.
Example 2:

This example shows the interrelationships of the CONNECT (Type 2), SET
CONNECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and S3
represent four servers.

Sequence Statement Current Dormant Release
Server Connections Pending
0 No statement None None None
1 SELECT * FROM TBLA S0 None None

(default)

2 CONNECT TO S1 S1 S0 None
SELECT * FROM TBLB S1 S0 None
3 CONNECT TO S2 s2 S0, S1 None
UPDATE TBLC SET ... 52 50, S1 None

Chapter 1. Statements 149

CONNECT (Type 2)

150

Sequence Statement Current Dormant Release
Server Connections Pending
4 CONNECT TO S3 S3 S0, S1, S2 None
SELECT * FROM TBLD S3 S0, S1, S2 None
5 SET CONNECTION S2 S2 S0, S1, S3 None
6 RELEASE S3 s2 S0, S1 s3
7 COMMIT S2 S0, s1 None
8 SELECT * FROM TBLE S2 S0, S1 None
9 DISCONNECT S1 S2 S0 None
SELECT * FROM TBLF S2 S0 None

Related concepts:
» “Distributed relational databases” in the SQL Reference, Volume 1

Related reference:

+ I"CONNECT (Type 1)” on page 134]

Related samples:

» “dbmcon.sqc -- How to use multiple databases (C)”

* “dbmcon.sqC -- How to use multiple databases (C++)”

SQL Reference, Volume 2

CREATE ALIAS

CREATE ALIAS

The CREATE ALIAS statement defines an alias for a table, view, nickname, or
another alias.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the alias does not exist

* CREATEIN privilege on the schema, if the schema name of the alias refers
to an existing schema.

To use the referenced object via the alias, the same privileges are required on
that object as would be necessary if the object itself were used.

Syntax:

»»>—CREATE—ALIAS—alias-name—FOR: table-name ><
view-name
nickname:
alias-name2—

Description:

alias-name

Names the alias. The name must not identify a table, view, nickname, or
alias that exists in the current database.

If a two-part name is specified, the schema name cannot begin with 'SYS’
(SQLSTATE 42939).

The rules for defining an alias name are the same as those used for
defining a table name.

FOR table-name, view-name, nickname, or alias-name2
Identifies the table, view, nickname, or alias for which alias-name is
defined. If another alias name is supplied (alias-name2), then it must not

Chapter 1. Statements 151

CREATE ALIAS

152

be the same as the new alias-name being defined (in its fully-qualified
form). The table-name cannot be a declared temporary table (SQLSTATE
42995).

Notes:
* Compatibilities
— For compatibility with DB2 UDB for OS/390 and z/OS:
- SYNONYM can be specified in place of ALIAS
— The definition of the newly created alias is stored in SYSCAT.TABLES.
— An alias can be defined for an object that does not exist at the time of
the definition. If it does not exist, a warning is issued (SQLSTATE 01522).
However, the referenced object must exist when a SQL statement

containing the alias is compiled, otherwise an error is issued (SQLSTATE
52004).

— An alias can be defined to refer to another alias as part of an alias chain
but this chain is subject to the same restrictions as a single alias when
used in an SQL statement. An alias chain is resolved in the same way as
a single alias. If an alias used in a view definition, a statement in a
package, or a trigger points to an alias chain, then a dependency is
recorded for the view, package, or trigger on each alias in the chain.
Repetitive cycles in an alias chain are not allowed and are detected at
alias definition time.

— Creating an alias with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization
ID of the statement has IMPLICIT_SCHEMA authority. The schema
owner is SYSIBM. The CREATEIN privilege on the schema is granted to
PUBLIC.

Examples:

Example 1: HEDGES attempts to create an alias for a table T1 (both
unqualified).

CREATE ALIAS Al FOR T1
The alias HEDGES.A1 is created for HEDGES.T1.

Example 2: HEDGES attempts to create an alias for a table (both qualified).
CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.

SQL Reference, Volume 2

CREATE ALIAS

Example 3: HEDGES attempts to create an alias for a table (alias in a different
schema; HEDGES is not a DBADM; HEDGES does not have CREATEIN on
schema MCKNIGHT).

CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1
This example fails (SQLSTATE 42501).

Example 4: HEDGES attempts to create an alias for an undefined table (both
qualified; FUZZY.WUZZY does not exist).

CREATE ALIAS HEDGES.A1 FOR FUZZY.WuzzY
This statement succeeds but with a warning (SQLSTATE 01522).

Example 5: HEDGES attempts to create an alias for an alias (both qualified).

CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1
CREATE ALIAS HEDGES.A2 FOR HEDGES.Al

The first statement succeeds (as per example 2).

The second statement succeeds and an alias chain is created, consisting of
HEDGES.A2 which refers to HEDGES.A1 which refers to MCKNIGHT.T1.
Note that it does not matter whether or not HEDGES has any privileges on
MCKNIGHT.T1. The alias is created regardless of the table privileges.

Example 6: Designate A1l as an alias for the nickname FUZZYBEAR.
CREATE ALIAS Al FOR FUZZYBEAR

Example 7: A large organization has a finance department numbered D108 and
a personnel department numbered D577. D108 keeps certain information in a
table that resides at a DB2 RDBMS. D577 keeps certain records in a table that
resides at an Oracle RDBMS. A DBA defines the two RDBMSs as data sources
within a federated system, and gives the tables the nicknames of DEPTD108
and DEPTD577, respectively. A federated system user needs to create joins
between these tables, but would like to reference them by names that are
more meaningful than their alphanumeric nicknames. So the user defines
FINANCE as an alias for DEPTD108 and PERSONNEL as an alias for
DEPTD577.

CREATE ALIAS FINANCE FOR DEPTD108
CREATE ALIAS PERSONNEL FOR DEPTD577

Chapter 1. Statements 153

CREATE BUFFERPOOL

CREATE BUFFERPOOL

154

The CREATE BUFFERPOOL statement creates a new buffer pool to be used
by the database manager.

In a partitioned database, a default buffer pool definition is specified for each
partition, with the capability to override the size on specific partitions. Also,
in a partitioned database, the buffer pool is defined on all partitions unless
database partition groups are specified. If database partition groups are
specified, the buffer pool will only be created on partitions that are in those
database partition groups.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared
only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The authorization ID of the statement must have SYSCTRL or SYSADM
authority.
Syntax:

|—IMMEDIATE—|
»>—CREATE BUFFERPOOL—bufferpool-name |_ J >
DEFERRED:

|—ALL DBPARTITIONNUMS

>

SIZE—number-of-pages——>

\\DATABASE PARTITION GROUP—Y—db-partition-group-name

> >

|—‘ except-on-db-partitions-clause ’J

|—NUMBLOCKPAGES 0

>

NUMBLOCKPAGES—number-of-pages

|—BLOCKSIZE—number—of—pages—I

SQL Reference, Volume 2

CREATE BUFFERPOOL

l—PAGESIZE—4096 |—NOT EXTENDED STORAGE—
> o B o >
PAGESIZE—integer EXTENDED STORAGE——
[Kj
except-on-db-partitions-clause:
|—EXCEPT ON——DBPART ITIONNUM >
LosparTITTONNUMS]

s

ST ZE—number-of—pagesJ—)4|

»—(—Y—db-partition-numberl

I—TO—db—part it ion—numberzJ

Description:

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The bufferpool-name must not identify a
buffer pool that already exists in a catalog (SQLSTATE 42710). The
bufferpool-name must not begin with the characters 'SYS” and 'IBM’
(SQLSTATE 42939).

IMMEDIATE
The bufferpool will be created immediately. If there is not enough
reserved space in the database shared memory to allocate the new
buffer pool, a warning (SQLSTATE 01657) is returned, and the
statement is executed DEFERRED.

DEFERRED
The bufferpool will be created when the database is deactivated (all
applications need to be disconnected from the database). Reserved
memory space is not needed; DB2 will allocate the required memory
from the system.

ALL DBPARTITIONNUMS
This buffer pool will be created on all partitions in the database.

DATABASE PARTITION GROUP db-partition-group-name, ...
Identifies the database partition group or groups to which the buffer pool
definition applies. If this is specified, this buffer pool will only be created
on partitions in these database partition groups. Each database partition
group must currently exist in the database (SQLSTATE 42704). If the
DATABASE PARTITION GROUP keywords are not specified, then this
buffer pool will be created on all partitions (and any partitions
subsequently added to the database).

Chapter 1. Statements 155

CREATE BUFFERPOOL

156

SIZE number-of-pages

The size of the buffer pool specified as the number of pages. In a
partitioned database, this will be the default size for all partitions where
the buffer pool exists.

except-on-db-partitions-clause

Specifies the partition or partitions for which the size of the buffer pool
will be different than the default. If this clause is not specified, then all
partitions will have the same size as specified for this buffer pool.

EXCEPT ON DBPARTITIONNUMS
Keywords that indicate that specific partitions are specified.
DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number]
Specifies a specific partition number that is included in the
partitions for which the buffer pool is created.

TO db-partition-number2
Specify a range of partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-numberl (SQLSTATE 428A9). All partitions between
and including the specified partition numbers must be included in
the partitions for which the buffer pool is created (SQLSTATE
42729).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.

NUMBLOCKPAGES number-of-pages

Specifies the number of pages that should exist in the block-based area.
The number of pages must not be greater than 98 percent of the number
of pages for the buffer pool (SQLSTATE 54052). Specifying the value 0
disables block I/0O. The actual value of NUMBLOCKPAGES used will be a
multiple of BLOCKSIZE.

BLOCKSIZE number-of-pages

Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

PAGESIZE integer [K]

Defines the size of pages used for the bufferpool. The valid values for
integer without the suffix K are 4 096, 8 192, 16 384 or 32 768. The valid
values for integer with the suffix K are 4, 8, 16 or 32. An error occurs if the
page size is not one of these values (SQLSTATE 428DE). The default is

4 096 byte (4K) pages. Any number of spaces is allowed between integer
and K, including no space.

EXTENDED STORAGE

If extended storage is enabled, pages that are being evicted from this

SQL Reference, Volume 2

CREATE BUFFERPOOL

buffer pool will be cached in extended storage. (Extended storage is
enabled by setting the database configuration parameters
NUM_ESTORE_SEGS and ESTORE_SEG_SIZE to non-zero values.)

NOT EXTENDED STORAGE
Even if extended storage is enabled, pages that are being evicted from this
buffer pool are not cached in extended storage.

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM
- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

* If the buffer pool is created using the DEFERRED option, any table space
created in this buffer pool will use a small system buffer pool of the same
page size, until next database activation. The database has to be restarted
for the buffer pool to become active and for table space assignments to the
new buffer pool to take effect. The default option is IMMEDIATE.

* A buffer pool cannot be created with both extended storage and
block-based support.

¢ There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements. If DB2 is unable to obtain memory for the regular buffer
pools, it will attempt to start up with small system buffer pools, one for
each page size (4K, 8K, 16K and 32K). In this situation, a warning will be
returned to the user (SQLSTATE 01626), and the pages from all table spaces
will use the system buffer pools.

Related reference:

¢ “Database Shared Memory Size configuration parameter -
database_memory” in the Administration Guide: Performance

Related samples:
* “tscreate.sqc -- How to create and drop buffer pools and table spaces (C)”

* “tscreate.sqC -- How to create and drop buffer pools and table spaces
(C++)”

Chapter 1. Statements 157

CREATE DATABASE PARTITION GROUP

CREATE DATABASE PARTITION GROUP

158

The CREATE DATABASE PARTITION GROUP statement creates a new
database partition group within the database, assigns partitions to the
database partition group, and records the database partition group definition
in the catalog.

Invocation:
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared

only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The authorization ID of the statement must have SYSCTRL or SYSADM or
authority.

Syntax:

»>—CREATE DATABASE PARTITION GROUP—db-partition-group-name >

I—ON ALL DBPARTITIONNUMS

N—EDBPARTITIONNUMS—I—(—'db—partition—number] I)
DBPARTITIONNUM— l—TO—db-partition-numberZ—

Description:

db-partition-group-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The db-partition-group-name must
not identify a database partition group that already exists in the catalog
(SQLSTATE 42710). The db-partition-group-name must not begin with the
characters 'SYS’ or 'IBM’ (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS
Specifies that the database partition group is defined over all partitions
defined to the database (db2nodes.cfg file) at the time the database
partition group is created.

If a partition is added to the database system, the ALTER DATABASE
PARTITION GROUP statement should be issued to include this new
partition in a database partition group (including IBMDEFAULTGROUP).
Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP
command must be issued to move data to the partition.

SQL Reference, Volume 2

CREATE DATABASE PARTITION GROUP

ON DBPARTITIONNUMS
Specifies the specific partitions that are in the database partition group.
DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-numberl
Specify a specific partition number. (A node-name of the form
NODEnnnnn can be specified for compatibility with the previous
version.)

TO db-partition-number2
Specify a range of partition numbers. The value of db-partition-number2
must be greater than or equal to the value of db-partition-numberl
(SQLSTATE 428A9). All partitions between and including the specified
partition numbers are included in the database partition group.

Rules:

* Each partition specified by number must be defined in the db2nodes.cfg file
(SQLSTATE 42729).

* Each db-partition-number listed in the ON DBPARTITIONNUMS clause must
be appear at most once (SQLSTATE 42728).

A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE
42729).

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM
- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

* This statement creates a partitioning map for the database partition group.
A partitioning map identifier (PMAP_ID) is generated for each partitioning
map. This information is recorded in the catalog and can be retrieved from
SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each
entry in the partitioning map specifies the target partition on which all
rows that are hashed reside. For a single-partition database partition group,
the corresponding partitioning map has only one entry. For a multiple
partition database partition group, the corresponding partitioning map has
4 096 entries, where the partition numbers are assigned to the map entries
in a round-robin fashion, by default.

Examples:

Assume that you have a partitioned database with six partitions defined as: 0,
1,2,5,7,and 8.

Chapter 1. Statements 159

CREATE DATABASE PARTITION GROUP

* Assume that you want to create a database partition group called
MAXGROUP on all six partitions. The statement is as follows:

CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

* Assume that you want to create a database partition group called
MEDGROUP on partitions 0, 1, 2, 5, and 8. The statement is as follows:

CREATE DATABASE PARTITION GROUP MEDGROUP
ON DBPARTITIONNUMS(0 TO 2, 5, 8)

* Assume that you want to create a single-partition database partition group
MINGROUP on partition 7. The statement is as follows:

CREATE DATABASE PARTITION GROUP MINGROUP
ON DBPARTITIONNUM (7)

Related concepts:
* “Data partitioning across multiple partitions” in the SQL Reference, Volume 1

160 SQL Reference, Volume 2

CREATE DISTINCT TYPE

CREATE DISTINCT TYPE

The CREATE DISTINCT TYPE statement defines a distinct type. The distinct
type is always sourced on one of the built-in data types. Successful execution
of the statement also generates functions to cast between the distinct type and
its source type and, optionally, generates support for the comparison
operators (=, <>, <, <=, >, and >=) for use with the distinct type.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include as
least one of the following:

* SYSADM or DBADM authority

* IMPLICIT_SCHEMA authority on the database, if the schema name of the
distinct type does not refer to an existing schema.

* CREATEIN privilege on the schema, if the schema name of the distinct type
refers to an existing schema.

Syntax:

»>—CREATE DISTINCT TYPE—distinct-type-name—AS >

(1)
>—| source-data-type |—WITH COMPARISONS ><

source-data-type:

Chapter 1. Statements 161

CREATE DISTINCT TYPE

F—SMALLINT |
INTEGER
T —
—BIGINT
——FLOAT

I—(—integer—)—l
—REAL:

PRECISION
—DOUBLE |_ —l
——DECIMAL

—DEC l—(—integer—l_—_l—)
—NUMERIC— integer

—NUM——-

CHARACTER
|—CHAR—I I—(integer‘)—| |—FOR BIT DATA—|

VARCHAR _| (—integer—)—
—I:[CHARACTER VARYING
CHAR:

—LONG VARCHAR

——BLOB——— (—integer)
—CLOB— K:
—DBCLOB—

G

—GRAPHIC

l

l—(integer)—l
—VARGRAPHIC (integer)
—LONG VARGRAPHIC
—DATE
—TIME:
—TIMESTAMP
—DATALINK:

l—(integer)—|

Notes:

1 Required for all source-data-types except LOBs, LONG VARCHAR,
LONG VARGRAPHIC and DATALINK which are not supported.

Description:

distinct-type-name
Names the distinct type. The name, including the implicit or explicit
qualifier must not identify a distinct type described in the catalog. The
unqualified name must not be the same as the name of a source-data-type
or BOOLEAN (SQLSTATE 42918).

In dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names. The qualified form is a
schema-name followed by a period and an SQL identifier.

162 SQL Reference, Volume 2

CREATE DISTINCT TYPE

The schema name (implicit or explicit) must not be greater than 8 bytes
(SQLSTATE 42622).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a distinct-type-name. The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.
Failure to observe this rule will lead to an error (SQLSTATE 42939).

If a two-part distinct-type-name is specified, the schema name cannot begin
with 'SYS’; otherwise, an error (SQLSTATE 42939) is raised.

source-data-type
Specifies the data type used as the basis for the internal representation of
the distinct type.

WITH COMPARISONS
Specifies that system-generated comparison operators are to be created for
comparing two instances of a distinct type. These keywords should not be
specified if the source-data-type is BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, or DATALINK, otherwise a warning
will be returned (SQLSTATE 01596) and the comparison operators will not
be generated. For all other source-data-types, the WITH COMPARISONS
keywords are required.

Notes:
* Privileges
The definer of the user-defined type always receives the EXECUTE

privilege WITH GRANT OPTION on all functions automatically generated
for the distinct type.

EXECUTE privilege on all functions automatically generated during the
CREATE DISTINCT TYPE is granted to PUBLIC.

* Creating a distinct type with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

* The following functions are generated to cast to and from the source type:
— One function to convert from the distinct type to the source type
— One function to convert from the source type to the distinct type

— One function to convert from INTEGER to the distinct type if the source
type is SMALLINT

— one function to convert from VARCHAR to the distinct type if the source
type is CHAR

— one function to convert from VARGRAPHIC to the distinct type if the
source type is GRAPHIC.

Chapter 1. Statements 163

CREATE DISTINCT TYPE

In general these functions will have the following format:

CREATE FUNCTION source-type-name (distinct-type-name)
RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)
RETURNS distinct-type-name ...

In cases in which the source type is a parameterized type, the function to
convert from the distinct type to the source type will have as function name
the name of the source type without the parameters (see for details).
The type of the return value of this function will include the parameters given
on the CREATE DISTINCT TYPE statement. The function to convert from the
source type to the distinct type will have an input parameter whose type is
the source type including its parameters. For example,

CREATE DISTINCT TYPE T_SHOESIZE AS CHAR(2)
WITH COMPARISONS

CREATE DISTINCT TYPE T_MILES AS DOUBLE
WITH COMPARISONS

will generate the following functions:
FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

FUNCTION T SHOESIZE (CHAR (2))
RETURNS T_SHOESIZE

FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the
distinct type. No other function with this name and with the same signature
may already exist in the database (SQLSTATE 42710).

The following table gives the names of the functions to convert from the
distinct type to the source type and from the source type to the distinct type
for all predefined data types.

Table 3. CAST functions on distinct types

Source Type Name Function Name Parameter Return-type
CHAR distinct-type-name CHAR (n) distinct-type-name
CHAR distinct-type-name CHAR (n)

distinct-type-name

VARCHAR (1)

distinct-type-name

VARCHAR

distinct-type-name

VARCHAR (n)

distinct-type-name

VARCHAR

164 SQL Reference, Volume 2

distinct-type-name

VARCHAR (1)

Table 3. CAST functions on distinct types (continued)

Source Type Name

Function Name

CREATE DISTINCT TYPE

Parameter

Return-type

LONG VARCHAR

distinct-type-name

LONG VARCHAR

distinct-type-name

LONG_VARCHAR

distinct-type-name

LONG VARCHAR

CLOB distinct-type-name CLOB (n) distinct-type-name
CLOB distinct-type-name CLOB (n)

BLOB distinct-type-name BLOB (1) distinct-type-name
BLOB distinct-type-name BLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name
GRAPHIC distinct-type-name GRAPHIC (n)
distinct-type-name VARGRAPHIC (1) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (1) distinct-type-name

VARGRAPHIC

distinct-type-name

VARGRAPHIC ()

LONG VARGRAPHIC

distinct-type-name

LONG VARGRAPHIC

distinct-type-name

LONG_VARGRAPHIC

distinct-type-name

LONG VARGRAPHIC

DBCLOB distinct-type-name DBCLOB (1) distinct-type-name
DBCLOB distinct-type-name DBCLOB (1)
SMALLINT distinct-type-name SMALLINT distinct-type-name
distinct-type-name INTEGER distinct-type-name
SMALLINT distinct-type-name SMALLINT
INTEGER distinct-type-name INTEGER distinct-type-name
INTEGER distinct-type-name INTEGER
BIGINT distinct-type-name BIGINT distinct-type-name
BIGINT distinct-type-name BIGINT
DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name
DECIMAL distinct-type-name DECIMAL (p,s)
NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name
DECIMAL distinct-type-name DECIMAL (p,s)
REAL distinct-type-name REAL distinct-type-name

distinct-type-name

DOUBLE

distinct-type-name

REAL

distinct-type-name

REAL

FLOAT(n) where n<=24

distinct-type-name

REAL

distinct-type-name

distinct-type-name

DOUBLE

distinct-type-name

REAL

distinct-type-name

REAL

Chapter 1. Statements

165

CREATE DISTINCT TYPE

Table 3. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type
FLOAT(n) where n>24 distinct-type-name DOUBLE distinct-type-name
DOUBLE distinct-type-name DOUBLE
FLOAT distinct-type-name DOUBLE distinct-type-name
DOUBLE distinct-type-name DOUBLE
DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE

distinct-type-name

DOUBLE

DOUBLE PRECISION

distinct-type-name

DOUBLE

distinct-type-name

DOUBLE

distinct-type-name

DOUBLE

DATE distinct-type-name DATE distinct-type-name
DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name
TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name
TIMESTAMP distinct-type-name TIMESTAMP

DATALINK distinct-type-name DATALINK distinct-type-name
DATALINK distinct-type-name DATALINK

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable
application. DECIMAL and DOUBLE should be used instead.

166

The functions described in the above table are the only functions that are
generated automatically when distinct types are defined. Consequently, none
of the built-in functions (AVG, MAX, LENGTH, etc.) are supported on distinct
types until the CREATE FUNCTION statement is used to register user-defined
functions for the distinct type, where those user-defined functions are sourced
on the appropriate built-in functions. In particular, note that it is possible to
register user-defined functions that are sourced on the built-in column
functions.

When a distinct type is created using the WITH COMPARISONS clause,
system-generated comparison operators are created. Creation of these
comparison operators will generate entries in the SYSCAT.ROUTINES catalog
view for the new functions.

The schema name of the distinct type must be included in the SQL path or
the FUNCPATH BIND option for successful use of these operators and cast
functions in SQL statements.

SQL Reference, Volume 2

CREATE DISTINCT TYPE
Examples:

Example 1: Create a distinct type named SHOESIZE that is based on an
INTEGER data type.

CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, <=, >,
>=) and cast functions INTEGER(SHOESIZE) returning INTEGER and
SHOESIZE(INTEGER) returning SHOESIZE.

Example 2: Create a distinct type named MILES that is based on a DOUBLE

data type.
CREATE DISTINCT TYPE MILES AS DOUBLE WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, =, >,
>=) and cast functions DOUBLE(MILES) returning DOUBLE and
MILES(DOUBLE) returning MILES.

Related reference:

* “Basic predicate” in the SQL Reference, Volume 1
[‘CREATE FUNCTION” on page 188

[‘CREATE TABLE” on page 332|

[‘SET PATH” on page 726

¢ “User-defined types” in the SQL Reference, Volume 1

Related samples:
¢ “dtudt.sqc -- How to create, use, and drop user-defined distinct types (C)”
* “udfcli.sqc -- Call a variety of types of user-defined functions (C)”

¢ “dtudt.sqC -- How to create, use, and drop user-defined distinct types
(C++)”

+ “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

* “DtUdtjava -- How to create, use and drop user defined distinct types
(JDBC)”

* “DtUdt.sqlj -- How to create, use and drop user defined distinct types
(SQLj)”

Chapter 1. Statements 167

CREATE EVENT MONITOR

CREATE EVENT MONITOR

168

The CREATE EVENT MONITOR statement defines a monitor that will record
certain events that occur when using the database. The definition of each
event monitor also specifies where the database should record the events.

Invocation:

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared
only if DYNAMICRULES run behavior is in effect for the package (SQLSTATE
42509).

Authorization:

The privileges held by the authorization ID must include either SYSADM or
DBADM authority (SQLSTATE 42502).

Syntax:

»»>—CREATE EVENT MONITOR—event-monitor-name—FOR >

Y —DATABASE L >
—TABLES
—DEADLOCKS

I—WITH DETAILS—|
—TABLESPACES
—BUFFERPOOLS
—CONNECTIONS

—STATEMENTSﬂ |—WHERE—' Event Condition ’J
NS

—TRANSACTIO

MANUALSTART
[]

»—WRITE T TABLE Table Options @ @ >
EPIPE—:!pe—namc ! |—AUTOSTARTJ
FILE—path-name—I File Options '—

LOCAL:

T T O Coromd
ON DBPARTITIONNUM—db-partition-number: GLOBAL-

SQL Reference, Volume 2

CREATE EVENT MONITOR

Event Condition:

|—AND | OR

A] APPL_ID = comparison-string |
NOT i:AUTH_IDi‘ (1)
APPL_NAME— |<>—
>
(1)
—>=.
—<.
(1)
<=
—LIKE
—NOT—LIKE-
—(Event Condition)
Table Options:
|_. @ BUFFERSIZE—pages—@———>

vmGroup
|—(—| targetTableInfo |—)J

BLOCKED—
|_

> B @ |
NONBLOCKED—

targetTablelnfo:

v|_’<2)

TABLE—tableName |
IN—tablespaceName
PCTDEACTIVATE—integer

TRUNC
INCLUDES ('eﬂ)—
EXCLUDES]

File Options:

e @ o
L NON E—JJ L pages
MAXFILES number-of-files MAXFILESIZE NONE

Chapter 1. Statements 169

CREATE EVENT MONITOR

BLOCKED—— APPEND
[

> @ @ @ '
l—BUFFERSIZE—pages—l L vonsLockeo LrepLace

Notes:

1 Other forms of these operators are also supported.
2 Each clause may be specified only once.
Description:

event-monitor-name
Names the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

DATABASE
Specifies that the event monitor records a database event when the
last application disconnects from the database.

TABLES
Specifies that the event monitor records a table event for each active
table when the last application disconnects from the database. An
active table is a table that has changed since the first connection to the
database.

DEADLOCKS
Specifies that the event monitor records a deadlock event whenever a
deadlock occurs. Specifying the WITH DETAILS option indicates that
the event monitor will generate a more detailed deadlock connection
event for each application involved in a deadlock. This additional
detail includes:

* Information about the statement that the application was executing
when the deadlock occurred, such as the statement text.

¢ The locks held by the application when the deadlock occurred. In a
partitioned database environment, the locks included are only those
on the database partition where the application was waiting for its
lock when the deadlock occurred.

Both DEADLOCKS and DEADLOCKS WITH DETAILS cannot be
specified in the same statement (SQLSTATE 42613).

TABLESPACES
Specifies that the event monitor records a table space event for each
table space when the last application disconnects from the database.

170 SQL Reference, Volume 2

CREATE EVENT MONITOR

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the
last application disconnects from the database.

CONNECTIONS
Specifies that the event monitor records a connection event when an
application disconnects from the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever a
SQL statement finishes executing.

TRANSACTIONS
Specifies that the event monitor records a transaction event whenever
a transaction completes (that is, whenever there is a commit or
rollback operation).

WHERE event condition
Defines a filter that determines which connections cause a
CONNECTION, STATEMENT or TRANSACTION event to occur. If
the result of the event condition is TRUE for a particular connection,
then that connection will generate the requested events.

This clause is a special form of the WHERE clause that should not be
confused with a standard search condition.

To determine if an application will generate events for a particular
event monitor, the WHERE clause is evaluated:

1. For each active connection when an event monitor is first turned
on.

2. Subsequently for each new connection to the database at connect
time.

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified then all events of the specified event
type will be monitored.

APPL_ID
Specifies that the application ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

AUTH_ID
Specifies that the authorization ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

Chapter 1. Statements 171

CREATE EVENT MONITOR

APPL_NAME
Specifies that the application program name of each connection
should be compared with the comparison-string in order to
determine if the connection should generate CONNECTION,
STATEMENT or TRANSACTION events (whichever was
specified).

The application program name is the first 20 bytes of the
application program file name, after the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or
APPL_NAME of each application that connects to the database.
comparison-string must be a string constant (that is, host variables
and other string expressions are not permitted).

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database
tables. The event monitor separates the data stream into one or more
logical data groups and inserts each group into a separate table. Data
for groups having a target table is kept, whereas data for groups not
having a target table is discarded. Each monitor element contained
within a group is mapped to a table column with the same name.
Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.

Table Options
Specifies table formatting options.

evmGrouplInfo
Defines the target table for a logical data group. This clause
should be specified for each grouping that is to be recorded.
However, if no evmGrouplnfo clauses are specified, all groups
for the event monitor type are recorded.

evmGroup
Identifies the logical data group for which a target table is
being defined. The value depends upon the type of event
monitor, as shown in the following table:

Type of Event Monitor evmGroup Value

Database DB
CONTROL'

Tables TABLE
CONTROL!

172 SQL Reference, Volume 2

CREATE EVENT MONITOR

Type of Event Monitor

evmGroup Value

Deadlocks

CONNHEADER
DEADLOCK
DLCONN
CONTROL!

Deadlocks with details

CONNHEADER
DEADLOCK
DLCONN?
DLLOCK®
CONTROL!

Tablespaces

TABLESPACE
CONTROL!

Bufferpools

BUFFERPOOL
CONTROL'

Connections

CONNHEADER
CONN
CONTROL'

Statements

CONNHEADER
STMT
SUBSECTION*
CONTROL!

Transactions

CONNHEADER
XACT
CONTROL!

! Logical data groups dbheader (conn_time element only), start and overflow, are all written to
the CONTROL group. Overflow is written if the event monitor is non-blocked and events were

discarded.

2 Corresponds to the DETAILED_DLCONN event.

3 Corresponds to the LOCK logical data groups that occur within each DETAILED_DLCONN

event.

* Created only for partitioned database environments.

targetTableInfo

Identifies the target table for the group. If a value for
targetTnblelnfo is not specified, CREATE EVENT
MONITOR processing proceeds as follows:

* A derived table name is used (described below).
* A default table space is chosen (described below).
All elements are included.

Chapter 1. Statements 173

CREATE EVENT MONITOR

* PCTDEACTIVATE and TRUNC are not specified.

TABLE tableName
Specifies the name of the target table. If the name is
unqualified, the table schema defaults to the schema
for the current authorization ID. If no name is
provided, the unqualified name is derived from
evmGroup and event-monitor-name as follows:

substring (evmGroup || || event-monitor-name,

1,128)

IN tablespaceName
Defines the table space in which the table is to be
created. If no table space name is provided, the table
space is chosen as follows:
IF table space IBMDEFAULTGROUP over which the user
has USE privilege exists
THEN choose it
ELSE IF a table space over which the user
has USE privilege exists
THEN choose it
ELSE issue an error (SQLSTATE 42727)

PCTDEACTIVATE integer
If a table is being created in a DMS table space, the
PCTDEACTIVATE parameter specifies how full the
table space must be before the event monitor
automatically deactivates. The specified value, which
represents a percentage, can range from 0 to 100. The
default value is 100 (meaning that the event monitor
deactivates when the table space becomes completely
full). This option cannot be specified with SMS table
spaces.

TRUNC
Specifies that the stmt_text column is defined as
VARCHAR(n), where n is the largest size that can fit
into the table row. In this case, any statement text that
is longer than n will be truncated. The following
example illustrates how the value of # is calculated.
Assume that:

* The stmt table is created in a table space that uses
32K pages.

* The total length of all the other columns in the table
equals 357 bytes.

In this case, the maximum row size for a table is
32677 bytes. Therefore, stmt_text would be defined as
VARCHAR(32317) (that is, 32644 - 357 - 4). If TRUNC

174 SQL Reference, Volume 2

CREATE EVENT MONITOR

is not specified, the stmt_text column will be defined
as CLOB(64K). Note that stmt_text is found in the
STMT group and the DLCONN group (for deadlocks
with details event monitors).

INCLUDES
Specifies that the following elements are to be
included in the table.

EXCLUDES
Specifies that the following elements are not to be
included in the table.

element
Identifies a monitor element. Element information can
be provided in one of the following forms:

* Specify no element information. In this case, all
elements are included in the CREATE TABLE
statement.

* Specify the elements to include in the form:
INCLUDES (elementl, element2, ..., elementn). Only
table columns are created for these elements.

* Specify the elements to exclude in the form:
EXCLUDES (elementl, element2, ..., elementn). Only
table columns are created for all elements except
these.

Use the db2evtbl command to build a CREATE
EVENT MONITOR statement that includes a complete
list of elements for a group.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). Table event monitors insert all data from a buffer, and
issues a COMMIT once the buffer has been processed. The larger
the buffers, the larger the commit scope used by the event
monitor. Highly active event monitors should have larger buffers
than relatively inactive event monitors. When a monitor is started,
two buffers of the specified size are allocated. Event monitors use
double buffering to permit asynchronous 1/0.

The minimum (and default) size of each buffer is 4 pages (that is,
2 buffers, each 16K in size). The maximum size of the buffers is
limited by the size of the monitor heap (MON_HEAP), because
the buffers are allocated from that heap. If using many event
monitors at the same time, increase the size of the MON_HEAP
database configuration parameter.

Chapter 1. Statements 175

CREATE EVENT MONITOR

176

PIPE

BLOCKED
Specifies that each agent that generates an event should wait for
an event buffer to be written out to disk if the agent determines
that both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event
monitors are subject to data loss on highly active systems.

Specifies that the target for the event monitor data is a named pipe. The
event monitor writes the data to the pipe in a single stream (that is, as if
it were a single, infinitely long file). When writing the data to a pipe, an
event monitor does not perform blocked writes. If there is no room in the
pipe buffer, then the event monitor will discard the data. It is the
monitoring application’s responsibility to read the data promptly if it
wishes to ensure no data loss.

pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor will
write the data.

The naming rules for pipes are platform specific. On UNIX operating
systems pipe names are treated like file names. As a result, relative
pipe names are permitted, and are treated like relative path-names
(see path-name below). However, on Windows NT /2000, there is a
special syntax for a pipe name. As a result, on Windows NT /2000
absolute pipe names are required.

The existence of the pipe will not be checked at event monitor
creation time. It is the responsibility of the monitoring application to
have created and opened the pipe for reading at the time that the
event monitor is activated. If the pipe is not available at this time,
then the event monitor will turn itself off, and will log an error. (That
is, if the event monitor was activated at database start time as a result
of the AUTOSTART option, then the event monitor will log an error in
the system error log.) If the event monitor is activated via the SET
EVENT MONITOR STATE SQL statement, then that statement will fail
(SQLSTATE 58030).

FILE

Indicates that the target for the event monitor data is a file (or set of
files). The event monitor writes out the stream of data as a series of 8
character numbered files, with the extension “evt”. (for example,

SQL Reference, Volume 2

CREATE EVENT MONITOR

00000000.evt, 00000001.evt, and 00000002.evt). The data should be
considered to be one logical file even though the data is broken up
into smaller pieces (that is, the start of the data stream is the first byte
in the file 00000000.evt; the end of the data stream is the last byte in
the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the
maximum number of files. An event monitor will never split a single
event record across two files. However, an event monitor may write
related records in two different files. It is the responsibility of the
application that uses this data to keep track of such related
information when processing the event files.

path-name
The name of the directory in which the event monitor should
write the event files data. The path must be known at the server,
however, the path itself could reside on another partition (for
example, in a UNIX-based system, this might be an NFS mounted
file). A string constant must be used when specifying the
path-name.

The directory does not have to exist at CREATE EVENT
MONITOR time. However, a check is made for the existence of
the target path when the event monitor is activated. At that time,
if the target path does not exist, an error (SQLSTATE 428A3) is
raised.

If an absolute path (a path that starts with the root directory on
AIX, or a disk identifier on Windows NT/2000) is specified, then
the specified path will be the one used. If a relative path (a path
that does not start with the root) is specified, then the path
relative to the DB2EVENT directory in the database directory will
be used.

When a relative path is specified, the DB2EVENT directory is
used to convert it into an absolute path. Thereafter, no distinction

is made between absolute and relative paths. The absolute path is
stored in the SYSCAT.EVENTMONITORS catalog view.

It is possible to specify two or more event monitors that have the
same target path. However, once one of the event monitors has
been activated for the first time, and as long as the target
directory is not empty, it will be impossible to activate any of the
other event monitors.

File Options
Specifies the options for the file format.

Chapter 1. Statements 177

CREATE EVENT MONITOR

MAXFILES NONE
Specifies that there is no limit to the number of event files that
the event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor
files that will exist for a particular event monitor at any time.
Whenever an event monitor has to create another file, it will
check to make sure that the number of .evt files in the
directory is less than number-of-files. If this limit has already
been reached, then the event monitor will turn itself off.

If an application removes the event files from the directory
after they have been written, then the total number of files
that an event monitor can produce can exceed number-of-files.
This option has been provided to allow a user to guarantee
that the event data will not consume more than a specified
amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor
file. Whenever an event monitor writes a new event record to
a file, it checks that the file will not grow to be greater than
pages (in units of 4K pages). If the resulting file would be too
large, then the event monitor switches to the next file. The
default for this option is:

* Windows NT /2000 - 200 4K pages
* UNIX - 1000 4K pages

The number of pages must be greater than at least the size of
the event buffer in pages. If this requirement is not met, then
an error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file’s size. If
MAXFILESIZE NONE is specified, then MAXFILES 1 must
also be specified. This option means that one file will contain

all of the event data for a particular event monitor. In this case
the only event file will be 00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All event monitor file I/O is buffered to improve the
performance of the event monitors. The larger the buffers, the
less I/O will be performed by the event monitor. Highly
active event monitors should have larger buffers than
relatively inactive event monitors. When the monitor is

178 SQL Reference, Volume 2

CREATE EVENT MONITOR

started, two buffers of the specified size are allocated. Event
monitors use double buffering to permit asynchronous I/0.

The minimum and default size of each buffer (if this option is
not specified) is 4 pages (that is, 2 buffers, each 16 K in size).
The maximum size of the buffers is limited by the size of the
monitor heap (MON_HEAP) since the buffers are allocated
from the heap. If using a lot of event monitors at the same
time, increase the size of the MON_HEAP database
configuration parameter.

Event monitors that write their data to a pipe also have two
internal (non-configurable) buffers that are each 1 page in size.
These buffers are also allocated from the monitor heap
(MON_HEAP). For each active event monitor that has a pipe
target, increase the size of the database heap by 2 pages.

BLOCKED
Specifies that each agent that generates an event should wait
for an event buffer to be written out to disk if the agent
determines that both event buffers are full. BLOCKED should
be selected to guarantee no event data loss. This is the default
option.

NONBLOCKED
Specifies that each agent that generates an event should not
wait for the event buffer to be written out to disk if the agent
determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the
extent of BLOCKED event monitors. However,
NONBLOCKED event monitors are subject to data loss on
highly active systems.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the
new event data to the existing stream of data files. When the
event monitor is reactivated, it will resume writing to the
event files as if it had never been turned off. APPEND is the
default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event
data.

REPLACE
Specifies that if event data files already exist when the event

Chapter 1. Statements 179

CREATE EVENT MONITOR

monitor is turned on, then the event monitor will erase all of
the event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor not be started automatically each time the
database is started. Event monitors with the MANUALSTART option
must be activated manually using the SET EVENT MONITOR STATE
statement. This is the default option.

AUTOSTART
Specifies that the event monitor be started automatically each time the
database is started.

ON DBPARTITIONNUM
Keyword that indicates that a specific database partition is specified.

db-partition-number
Specifies a database partition number where the event monitor runs
and writes the events. With the monitoring scope defined as
GLOBAL, all database partitions report to the specified database
partition number. The I/O component will physically run on the
specified database partition, writing its records to the file or pipe
specified above.

GLOBAL
The event monitor reports on all database partitions. For a partitioned
database in DB2 Universal Database Version 8, only deadlocks and
deadlocks with details event monitors can be defined as GLOBAL.

LOCAL
The event monitor reports only on the database partition that is running.
It gives a partial trace of the database activity. This is the default.

Rules:

* Each of the event types (DATABASE, TABLES, DEADLOCKS,...) can only be
specified once in a particular event monitor definition.

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM

* Event monitor definitions are recorded in the SYSCAT. EVENTMONITORS
catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view. The names of target tables are recorded in the
SYSCAT.EVENTTABLES catalog view.

180 SQL Reference, Volume 2

CREATE EVENT MONITOR

There is a performance impact when using DEADLOCKS WITH DETAILS
rather than DEADLOCKS. When a deadlock occurs, the database manager
requires extra time to record the extra deadlock information.

A CONNHEADER event is normally written whenever a connection is
established. However, if an event monitor is created only for DEADLOCKS
WITH DETAILS, a CONNHEADER event will only be written the first time
that the connection participates in a deadlock.

The BUFFERSIZE parameter restricts the size of STMT and
DETAILED_DLCONN events. If a STMT event cannot fit within a buffer, it
is truncated by truncating statement text. If a DETAILED_DLCONN event
cannot fit within a buffer, it is truncated by removing locks. If it still cannot
fit, statement text is truncated.

Write to table event monitors:
— General Notes:

- All target tables are created when the CREATE EVENT MONITOR
statement executes.

- If the creation of a table fails for any reason, an error is passed back to
the application program, and the CREATE EVENT MONITOR
statement fails.

- A target table can only be used by one event monitor. During CREATE
EVENT MONITOR processing, if a target table is found to have
already been defined for use by another event monitor, the CREATE
EVENT MONITOR statement fails, and an error is passed back to the
application program. A table is defined for use by another event
monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view.

- During CREATE EVENT MONITOR processing, if a table already
exists, but is not defined for use by another event monitor, no table is
created, and processing continues. A warning is passed back to the
application program.

- Any table spaces must exist before the CREATE EVENT MONITOR
statement is executed. The CREATE EVENT MONITOR statement
does not create table spaces.

- If specified, the LOCAL and GLOBAL keywords are ignored. With
WRITE TO TABLE event monitors, an event monitor output process or
thread is started on each database partition in the instance, and each
of these processes reports data only for the database partition on
which it is running.

- The following event types from the flat monitor log file or pipe format
are not recorded by write to table event monitors:

* LOG_STREAM_HEADER

* LOG_HEADER

Chapter 1. Statements 181

CREATE EVENT MONITOR

182

* DB_HEADER (Elements db_name and db_path are not recorded.
The element conn_time is recorded in CONTROL.)

In a partitioned database environment, the table space within which
tables are defined must exist across all partitions that will have event
monitor data written to them. Failure to observe this rule will result in
records not being written to the log on partitions (with event
monitors) where the table space does not exist. Events will still be
written on partitions where the table space does exist, and no error will
be returned. This behavior allows users to choose a subset of partitions
for monitoring, by creating a table space that exists only on certain
partitions.

Users must manually prune all target tables.

— Table Columns:

Column names in a table match an event monitor data element
identifier. Monitor variables of type sqlm_time (elapsed time) are an
exception. The column names for such types are type_name_s, and
type_name_ms, representing the columns that store the time in
seconds and microseconds, respectively. Any event monitor element
that does 1ot have a corresponding target table column is ignored.

Use the db2evtbl command to build a CREATE EVENT MONITOR
command that includes a complete list of elements for a group.

The types of columns being used for monitor elements correlate to the
following mapping:
SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)
(If the data in the event monitor
record exceeds n bytes,
it is truncated.)
SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM TYPE U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT

sqlm_timestamp TIMESTAMP
sqim_time(elapsed time) BIGINT
sqlca:
sqlerrmc VARCHAR[72]
sqlstate CHAR[5]
sqlwarn CHAR[11]
other fields INTEGER or BIGINT

Columns are defined to be NOT NULL.

Because the performance of tables with CLOB columns is inferior to
tables that have VARCHAR columns, consider using the TRUNC
keyword when specifying the stmt evmGroup (or dlconn evmGroup, if
using deadlocks with details).

Unlike other target tables, the columns in the CONTROL table do not
match data element identifiers. Columns are defined as follows:

SQL Reference, Volume 2

CREATE EVENT MONITOR

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Partition key (partitioned
database only)

PARTITION_NUMBER INTEGER N Partition number (partitioned
database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of

the MESSAGE_TIME column.
This can be one of
the following:
- FIRST_CONNECT (the time
of the first connect to the
database after activation)
- EVMON_START (the time that
the event monitor listed
in EVMONNAME was started)
- OVERFLOWS:n (denotes that
n records were discarded
because of buffer overflow)
MESSAGE_TIME ~ TIMESTAMP N Timestamp
- In a partitioned database environment, the first column of each table is
named PARTITION_KEY, is NOT NULL, and is of type INTEGER.
This column is used as the partitioning key for the table. The value of
this column is chosen so that each event monitor process inserts data
into the database partition on which the process is running; that is,
insert operations are performed locally on the database partition
where the event monitor process is running. On any database
partition, the PARTITION_KEY field will contain the same value. This
means that if a data partition is dropped and data redistribution is
performed, all data on the dropped database partition will go to one
other database partition instead of being evenly distributed. Therefore,
before removing a database partition, consider deleting all table rows
on that database partition.

- In a partitioned database environment, a column named
PARTITION_NUMBER can be defined for each table. This column is
NOT NULL and is of type INTEGER. It contains the number of the
partition on which the data was inserted. Unlike the PARTITION_KEY
column, the PARTITION_NUMBER column is not mandatory. The
PARTITION_NUMBER column is not allowed in a non-partitioned
database environment.

— Table Attributes:

- Default table attributes are used. Besides partitioning key (partitioned
database only), no extra options are specified when creating tables.

- Indexes on the table can be created.

- Extra table attributes (such as volatile, RI, triggers, constraints, and so
on) can be added, but the event monitor process (or thread) will
ignore them.

Chapter 1. Statements 183

CREATE EVENT MONITOR

184

If "not logged initially” is added as a table attribute, it is turned off at
the first COMMIT, and is not set back on.

— Event Monitor Activation:

When an event monitor activates, all target table names are retrieved
from the SYSCAT.EVENTTABLES catalog view.

In a partitioned database environment, activation processing
determines the table spaces and database partition groups in which
the target tables reside. The event monitor only activates on those
partitions that are included in the database partition group.

If a target table does not exist when the event monitor activates (or, in
a partitioned database environment, if the table space does not reside
on a database partition), activation continues, and data that would
otherwise be inserted into this table is ignored.

Activation processing validates each target table. If validation fails,
activation of the event monitor fails, and messages are written to the
administration log.

During activation in a partitioned database environment, the
CONTROL table rows for FIRST_CONNECT and EVMON_START are
only inserted on the catalog database partition. This requires that the
table space for the control table exist on the catalog database partition.
If it does not exist on the catalog database partition, these inserts are
not performed.

In a partitioned database environment, if a partition is not yet active
when a write to table event monitor is activated, that partition is
activated before the event monitor is activated. In this case, database
activation behaves as if an SQL CONNECT statement has activated the
database on all partitions.

— Run Time:

An event monitor runs with DBADM authority.

If, while an event monitor is active, an insert operation into a target
table fails:

* Uncommitted changes are rolled back.
* A message is written to the administration log.
* The event monitor is deactivated.

If an event monitor is active, it performs a local COMMIT when it has
finished processing an event monitor buffer.

In a partitioned database environment, the actual statement text,
which can be up to 65 535 bytes in length, is only stored (in the STMT
or DLCONN table) by the event monitor process running on the
application coordinator database partition. On other database
partitions, this value has zero length.

SQL Reference, Volume 2

CREATE EVENT MONITOR

- In a non-partitioned database environment, all write to table event
monitors are deactivated when the last application terminates (and the
database has not been explicitly activated). In a partitioned database
environment, write to table event monitors are deactivated when the
catalog partition deactivates.

- The DROP EVENT MONITOR statement does not drop target tables.
Examples:

Example 1: The following example creates an event monitor called SMITHPAY.
This event monitor, will collect event data for the database as well as for the
SQL statements performed by the PAYROLL application owned by the
JSMITH authorization ID. The data will be appended to the absolute path
/home/jsmith/event/smithpay/. A maximum of 25 files will be created. Each
file will be a maximum of 1 024 4K pages long. The file I/O will be
non-blocked.
CREATE EVENT MONITOR SMITHPAY

FOR DATABASE, STATEMENTS

WHERE APPL_NAME = 'PAYROLL' AND AUTH_ID = 'JSMITH'

WRITE TO FILE '/home/jsmith/event/smithpay'

MAXFILES 25

MAXFILESIZE 1024

NONBLOCKED

APPEND

Example 2: The following example creates an event monitor called
DEADLOCKS_EVTS. This event monitor will collect deadlock events and will
write them to the relative path DLOCKS. One file will be written, and there is
no maximum file size. Each time the event monitor is activated, it will append
the event data to the file 00000000.evt if it exists. The event monitor will be
started each time the database is started. The I/0 will be blocked by default.
CREATE EVENT MONITOR DEADLOCK_EVTS

FOR DEADLOCKS

WRITE TO FILE 'DLOCKS'

MAXFILES 1

MAXFILESIZE NONE
AUTOSTART

Example 3: This example creates an event monitor called DB_APPLS. This
event monitor collects connection events, and writes the data to the named
pipe /home/jsmith/applpipe.

CREATE EVENT MONITOR DB_APPLS

FOR CONNECTIONS
WRITE TO PIPE '/home/jsmith/applpipe’

Chapter 1. Statements 185

CREATE EVENT MONITOR

186

Example 4: This example, which assumes a partitioned database environment,
creates an event monitor called FOO. This event monitor collects SQL
statement events and writes them to SQL tables with the following derived
names:

« CONNHEADER_FOO
* STMT_FOO

* SUBSECTION_FOO
* CONTROL_FOO

Because no table space information is supplied, all tables will be created in a

table space selected by the system, based on the rules described under the IN

tablespaceName clause. All tables include all elements for their group (that is,

columns are defined whose names are equivalent to the element names.)
CREATE EVENT MONITOR FOO

FOR STATEMENTS
WRITE TO TABLE

Example 5: This example, which assumes a partitioned database environment,
creates an event monitor called BAR. This event monitor collects SQL
statement and transaction events and writes them to tables as follows:

* Any data from the STMT group is written to table MYDEPT.MYSTMTINFO.
The table is created in table space MYTABLESPACE. Create columns only
for the following elements: rows_read, rows_written, and stmt_text. Any
other elements of the group will be discarded.

* Any data from the SUBSECTION group is written to table
MYDEPT.MYSUBSECTIONINFO. The table is created in table space
MYTABLESPACE. The table includes all columns, except start_time,
stop_time, and partial_record.

* Any data from the XACT group is written to table XACT_BAR. Because no
table space information is supplied, the table will be created in a table
space selected by the system, based on the rules described under the IN
tablespaceName clause. This table includes all elements contained in the xact
group.

* No tables are created for connheader or control; all data for these groups
are discarded.

CREATE EVENT MONITOR BAR
FOR STATEMENTS, TRANSACTIONS
WRITE TO TABLE
STMT (TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE
INCLUDES (ROWS_READ, ROWS_WRITTEN, STMT_TEXT)),
SUBSECTION(TABLE MYDEPT.MYSUBSECTIONINFO IN MYTABLESPACE

EXCLUDES (START_TIME, STOP_TIME, PARTIAL RECORD)),
XACT

Related reference:

SQL Reference, Volume 2

CREATE EVENT MONITOR

* “Basic predicate” in the SQL Reference, Volume 1

¢ “Event monitor logical data groups and data elements” in the System
Monitor Guide and Reference

Chapter 1. Statements 187

CREATE FUNCTION

CREATE FUNCTION

188

This statement is used to register or define a user-defined function or function
template with an application server.

There are five different types of functions that can be created using this

statement. Each of these is described separately.

* External Scalar. The function is written in a programming language and
returns a scalar value. The external executable is registered in the database,
along with various attributes of the function.

* External Table. The function is written in a programming language and
returns a complete table. The external executable is registered in the
database along with various attributes of the function.

* OLE DB External Table. A user-defined OLE DB external table function is
registered in the database to access data from an OLE DB provider.

* Sourced or Template. A source function is implemented by invoking
another function (either built-in, external, SQL, or source) that is already
registered in the database.

It is possible to create a partial function, called a function template, which
defines what types of values are to be returned, but which contains no
executable code. The user maps it to a data source function within a
federated system, so that the data source function can be invoked from a
federated database. A function template can be registered only with an
application server that is designated as a federated server.

* SQL Scalar, Table or Row. The function body is written in SQL and defined
together with the registration in the database. It returns a scalar value, a
table, or a single row.

Related reference:

+ ['CREATE FUNCTION (OLE DB External Table)” on page 235|
[‘CREATE FUNCTION (SQL Scalar, Table or Row)” on page 254]
['CREATE FUNCTION (External Scalar)” on page 190}
[‘CREATE FUNCTION (External Table)” on page 217

[‘CREATE FUNCTION (Sourced or Template)” on page 243

Related samples:
* “dbinline.sqc -- How to use inline SQL Procedure Language (C)”
* “udfcli.sqc -- Call a variety of types of user-defined functions (C)”

* “udfemcli.sqc - Call a variety of types of embedded SQL user-defined
functions. (C)”

» “udfcli.c -- How to work with different types of user-defined functions
(UDFs) (CLI)”

SQL Reference, Volume 2

CREATE FUNCTION

“udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

“udfemcli.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

“UDFCreate.db2 -- How to catalog the Java UDFs contained in UDFsrvjava

”

“UDFjCreate.db2 -- How to catalog the Java UDFs contained in
UDFjsrv.java ”

Chapter 1. Statements 189

CREATE FUNCTION (External Scalar)

CREATE FUNCTION (External Scalar)

190

This statement is used to register a user-defined external scalar function with
an application server. A scalar function returns a single value each time it is
invoked, and is in general valid wherever an SQL expression is valid

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

* CREATE_EXTERNAL_ROUTINE authority on the database and at least one
of:

— IMPLICIT_SCHEMA authority on the database, if the schema name of
the function does not refer to an existing schema.

— CREATEIN privilege on the schema, if the schema name of the function
refers to an existing schema.

To create a not-fenced function, the privileges held by the authorization ID of
the statement must also include at least one of the following:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»>—CREATE FUNCTION—function-name >

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

~—(- -
l_s

l—par‘ameter—name—|

data-typel |_ _|
AS LOCATOR:

»—RETURNS~|::ata-typeZ I_ J @ >
AS LOCATOR

ata-type3—CAST FROM—data-type4

I—AS LOCATOR—|

> |_ _| @ -EXTERNAL |_ @
SPECIFIC—specific-name NAME—[‘stm’ng’ jJ
er

identifi

»—LANGUAGE PARAMETER STYLE DB2GENERAL——@ >
E AVA EJAVA
OLE SQL———

|—NOT DETERMINISTIC— |—FENCED
> I_ @ @ >
DETERMINISTIC FENCED— THREADSAFE
NOT THREADSAFE
THREADSAFE
NOT FENCED—.J_——I—
|—RETURNS NULL ON NULL INPUT—
> I_ @ >
CALLED ON NULL INPUT———

|—READS SQL DATA— |—STATIC DISPATCH—I |—EXTERNAL ACTION——
> @ @ B @ >
i:NO SQL——— NO EXTERNAL ACTION-
CONTAINS SQL—
|—NO SCRATCHPAD |—N0 FINAL CALL—
> ® B ® @ >
L |—100— FINAL CALL— i:ALLOW PARALLEL——
SCRATCHPAD DISALLOW PARALLEL-
length—
l—NO DBINFO—
T *T T° :
DBINFO—— TRANSFORM GROUP—group-name

C T°
PREDICATES—(—I predicate-specification '—)

Chapter 1. Statements 191

CREATE FUNCTION (External Scalar)

INHERTT SPECIAL REGISTERS NOT FEDERATED
[1 ol 1

>

o @ >

predicate-specification:

—WHEN = constant i >
<> EXPRESSION AS—expression-name

data-filter i
index-exploitation ’J

1ndex-exp1o1’tat1‘oni L‘
data-filter ’J

data-filter:

|—FILTER USING—[function-invocation |

case-expression

index-exploitation:

I—SEARCH BY—L—_l—INDEX EXTENSION—index-extension-name >

EXACT

>—'—| exploitation-rule i |

exploitation-rule:

—WHEN KEY— (—parameter-namel—) >

»—USE—search-method-name— (——parame ter—namezl) |

Notes:

1 LANGUAGE SQL is also supported.
Description:

function-name

Names the function being defined. It is a qualified or unqualified name

192 SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function or method described in the catalog (SQLSTATE
42723). The unqualified name, together with the number and data types of
the parameters, while of course unique within its schema, need not be
unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS’;.
Otherwise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a function-name. The names are SOME,
ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.
Failure to observe this rule will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there
is some difference in the signature of the functions.

Although there is no prohibition against it, an external user-defined
function should not be given the same name as a built-in function, unless
it is an intentional override. To give a function having a different meaning
the same name (for example, LENGTH, VALUE, MAX), with consistent
arguments, as a built-in scalar or column function, is to invite trouble for
dynamic SQL statements, or when static SQL applications are rebound;
the application may fail, or perhaps worse, may appear to run
successfully while providing a different result.

parameter-name
Names the parameter that can be used in the subsequent function
definition. Parameter names are required to reference the parameters of a
function in the index-exploitation clause of a predicate specification.

(data-typel,...)
Identifies the number of input parameters of the function, and specifies
the data type of each parameter. One entry in the list must be specified
for each parameter that the function will expect to receive. No more than
90 parameters are allowed. If this limit is exceeded, an error (SQLSTATE
54023) is raised.

Chapter 1. Statements 193

CREATE FUNCTION (External Scalar)

194

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example:

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Lengths,
precisions, and scales are not considered in this type comparison.
Therefore CHAR(8) and CHAR(35) are considered to be the same type, as
are DECIMAL(11,2) and DECIMAL (4,3). For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. There is
some further bundling of types that causes them to be treated as the same
type for this purpose, such as DECIMAL and NUMERIC. A duplicate
signature raises an SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...
CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

The second and fourth statements would fail because they are considered
to be duplicate functions.

data-typel
Specifies the data type of the parameter.

* SQL data type specifications and abbreviations which may be
specified in the data-typel definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the function may be specified.

* DECIMAL (and NUMERIC) are invalid with LANGUAGE C and
OLE (SQLSTATE 42815).

* REF(type-name) may be specified as the type of a parameter.
However, such a parameter must be unscoped.

* Structured types may be specified, provided that appropriate
transform functions exist in the associated transform group.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added. This indicates that a
LOB locator is to be passed to the UDF instead of the actual
value. This saves greatly in the number of bytes passed to the
UDF, and may save as well in performance, particularly in the
case where only a few bytes of the value are actually of interest to
the UDFE.

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

Here is an example which illustrates the use of the AS LOCATOR
clause in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)

which assumes that IMAGE is a distinct type based on one of the
LOB types.

Note also that for argument promotion purposes, the AS
LOCATOR clause has no effect. In the example the types are
considered to be CLOB and IMAGE respectively, which would
mean that a CHAR or VARCHAR argument could be passed to
the function as the first argument. Likewise, the AS LOCATOR
has no effect on the function signature, which is used in matching
the function (a) when referenced in DML, by a process called
"function resolution”, and (b) when referenced in a DDL statement
such as COMMENT ON or DROP. In fact the clause may or may
not be used in COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the function is FENCED and has the NO SQL option, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

RETURNS
This mandatory clause identifies the output of the function.

data-type2
Specifies the data type of the output.

In this case, exactly the same considerations apply as for the
parameters of external functions described above under data-typel for
function parameters.

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be added. This indicates that a LOB
locator is to be passed from the UDF instead of the actual value.

data-type3 CAST FROM data-type4
Specifies the data type of the output.

This form of the RETURNS clause is used to return a different data
type to the invoking statement from the data type that was returned
by the function code. For example, in

CREATE FUNCTION GET_HIRE_DATE(CHAR(6))
RETURNS DATE CAST FROM CHAR(16)

Chapter 1. Statements 195

CREATE FUNCTION (External Scalar)

the function code returns a CHAR(10) value to the database manager,
which, in turn, converts it to a DATE and passes that value to the
invoking statement. The data-type4 must be castable to the data-type3
parameter. If it is not castable, an error (SQLSTATE 42880) is raised.

Since the length, precision or scale for data-type3 can be inferred from
data-type4, it not necessary (but still permitted) to specify the length,
precision, or scale for parameterized types specified for data-type3.
Instead empty parentheses may be used (for example VARCHAR()
may be used). FLOAT() cannot be used (SQLSTATE 42601) since
parameter value indicates different data types (REAL or DOUBLE).

Distinct types and structured types are not valid as the type specified
in data-type4 (SQLSTATE 42815).

The cast operation is also subject to run-time checks that might result
in conversion errors being raised.

AS LOCATOR
For data-type4 specifications that are LOB types or distinct types
which are based on LOB types, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed back from
the UDF instead of the actual value.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance or method specification that exists at the application
server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being

196 SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

used to register a new function based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified "NAME function-name” is assumed.

NAME ’string’
This clause identifies the name of the user-written code which
implements the function being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.

* For LANGUAGE C:

The string specified is the library name and function within library,
which the database manager invokes to execute the user-defined
function being CREATEd. The library (and the function within the
library) do not need to exist when the CREATE FUNCTION
statement is performed. However, when the function is used in an
SQL statement, the library and function within the library must
exist and be accessible from the database server machine; otherwise,
an error (SQLSTATE 42724) is returned.

> library_id ’ ><
_[absolute_path_idJ L!—func_idJ

Extraneous blanks are not permitted within the single quotation

marks.

library_id

Identifies the library name containing the function. The
database manager will look for the library in the
.../sqllib/function directory (UNIX-based systems), or the
..\instance_name\function directory (Windows operating
systems, as specified by the DB2INSTPROF registry variable),
where the database manager will locate the controlling sqllib
directory that is being used to run the database manager. For
example, the controlling sqllib directory on UNIX-based
systems is /u/$DB2INSTANCE/sqllib.

If 'myfunc’ were the library_id on a UNIX-based system it
would cause the database manager to look for the function in
library /u/production/sqllib/function/myfunc, provided the
database manager is being run from /u/production.

On Windows operating systems, the database manager will
look in the LIBPATH or PATH if the library_id is not located in
the function directory.

Chapter 1. Statements 197

CREATE FUNCTION (External Scalar)

198

absolute_path_id
Identifies the full path name of the file containing the function.

On a UNIX-based system, for example,
’/u/jchui/mylib/myfunc’ would cause the database manager to
look in /u/jchui/mylib for the myfunc shared library.

On Windows operating systems, ‘d:\mylib\myfunc” would
cause the database manager to load dynamic link library,
myfunc.dll file, from the d:\mylib directory.

! func_id
Identifies the entry point name of the function to be invoked.
The ! serves as a delimiter between the library id and the
function id. If ! func_id is omitted, the database manager will

use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ‘'mymod!func8” would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
func8 within that library.

On Windows operating systems, ‘mymod!func8” would direct
the database manager to load the mymod.dll file and call the
func8() function in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

The body of every external function should be in a directory that is
available on every partition of the database.

For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The
class identifier and method identifier do not need to exist when the
CREATE FUNCTION statement is performed. If a jar_id is specified,
it must exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the
method identifier must exist and be accessible from the database
server machine, otherwise an error (SQLSTATE 42724) is raised.

> —L—_l—class_id—[.:l—method_id—' <
Jar_id : !

Extraneous blanks are not permitted within the single quotes.

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

jar_id
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier,
or a schema qualified identifier. Examples are ‘'myJar’ and
‘mySchema.myJar’.

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ‘'myPacks.UserFuncs’.
The Java virtual machine will look in directory
".../myPacks/UserFuncs/” for the classes. On Windows
operating systems, the Java virtual machine will look in
directory '...\myPacks\UserFuncs\".

method_id
Identifies the method name of the Java object to be invoked.

For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier, which the database
manager invokes to execute the user-defined function being
CREATEd. The programmatic identifier or class identifier, and
method identifier do not need to exist when the CREATE
FUNCTION statement is performed. However, when the function is
used in an SQL statement, the method identifier must exist and be
accessible from the database server machine, otherwise an error
(SQLSTATE 42724) is raised.

»»— —[progid !—method_id—' <
chid——I_

Extraneous blanks are not permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.
progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE

object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn-nnnn—nnnn—nnnn-nnnnnnnnnnnn}

Chapter 1. Statements 199

CREATE FUNCTION (External Scalar)

200

where 'n’ is an alphanumeric character. clsid is not interpreted
by the database manager but only forwarded to the OLE APIs
at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used
as the library-id in the string. Unless it is a delimited identifier, the
identifier is folded to upper case. If the identifier is qualified with a
schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the user-defined function body is written.

C This means the database manager will call the user-defined
function as if it were a C function. The user-defined function must
conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

JAVA This means the database manager will call the user-defined
function as a method in a Java class.

OLE This means the database manager will call the user-defined
function as if it were a method exposed by an OLE automation
object. The user-defined function must conform with the OLE
automation data types and invocation mechanism, as described in
the OLE Automation Programmer’s Reference.

LANGUAGE OLE is only supported for user-defined functions
stored in DB2 for Windows operating systems. THREADSAFE
may not be specified for UDFs defined with LANGUAGE OLE
(SQLSTATE 42613).

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from functions.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This can only specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

JAVA
This means that the function will use a parameter passing convention

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

that conforms to the Java language and SQLj Routines specification.
This can only be specified when LANGUAGE JAVA is used and there
are no structured types as parameter or return types (SQLSTATE
429B8). PARAMETER STYLE JAVA functions do not support the
FINAL CALL, SCRATCHPAD or DBINFO clauses.

SQL
Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C
language calling and linkage conventions or methods exposed by OLE
automation objects. This must be specified when LANGUAGE C or
LANGUAGE OLE is used.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same result from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC function
would be a random-number generator. An example of a DETERMINISTIC
function would be a function that determines the square root of the input.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to
run in the database manager operating environment’s process or address
space.

If a function is registered as FENCED, the database manager protects its
internal resources (for example, data buffers) from access by the function.
Most functions will have the option of running as FENCED or NOT
FENCED. In general, a function running as FENCED will not perform as
well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions not adequately coded, reviewed and
tested can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent failures
that might occur, but cannot guarantee complete integrity when NOT
FENCED user-defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or
NOT THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

Chapter 1. Statements 201

CREATE FUNCTION (External Scalar)

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a
user-defined function as NOT FENCED.

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:

* If the function is defined as THREADSAFE, the database manager can
invoke the function in the same process as other routines. In general, to
be threadsafe, a function should not use any global or static data areas.
Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED functions can be
THREADSAEFE.

¢ If the function is defined as NOT THREADSAFE, the database manager
will never invoke the function in the same process as another routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE
is JAVA. For all other languages, NOT THREADSAFE is the default. If the
function is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to
have no parameters, then of course this null argument condition cannot
arise, and it does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at execution
time, any one of the function’s arguments is null, then the user-defined
function is not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDFE.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO SQL, CONTAINS SQL, READS SQL DATA
Indicates whether the function issues any SQL statements and, if so, what

type.

202 SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

NO SQL
Indicates that the function cannot execute any SQL statements
(SQLSTATE 38001).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the function (SQLSTATE 38004 or 42985).
Statements that are not supported in any function return a different
error (SQLSTATE 38003 or 42985).

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can
be included in the function (SQLSTATE 38002 or 42985). Statements
that are not supported in any function return a different error
(SQLSTATE 38003 or 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, DB2
chooses a function based on the static types (declared types) of the
parameters of the function.

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions have no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for
the function to “save state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:

* length, if specified, sets the size of the scratchpad in bytes; this value
must be between 1 and 32 767 (SQLSTATE 42820). The default size is
100 bytes.

* It is initialized to all X'00"s.
* Its scope is the SQL statement. There is one scratchpad per reference to
the external function in the SQL statement. So if the UDFX function in

the following statement is defined with the SCRATCHPAD keyword,
three scratchpads would be assigned.

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19

Chapter 1. Statements 203

CREATE FUNCTION (External Scalar)

204

If ALLOW PARALLEL is specified or defaulted to, then the scope is
different from the above. If the function is executed in multiple
partitions, a scratchpad would be assigned in each partition where the
function is processed, for each reference to the function in the SQL
statement. Similarly, if the query is executed with intra-partition
parallelism enabled, more than three scratchpads may be assigned.

¢ It is persistent. Its content is preserved from one external function call
to the next. Any changes made to the scratchpad by the external
function on one call will be there on the next call. The database
manager initializes scratchpads at the beginning of execution of each
SQL statement. The database manager may reset scratchpads at the
beginning of execution of each subquery. The system issues a final call
before resetting a scratchpad if the FINAL CALL option is specified.

* It can be used as a central point for system resources (for example,
memory) which the external function might acquire. The function could
acquire the memory on the first call, keep its address in the scratchpad,
and refer to it in subsequent calls.

(In such a case where system resource is acquired, the FINAL CALL
keyword should also be specified; this causes a special call to be made
at end-of-statement to allow the external function to free any system
resources acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined
function an additional argument is passed to the external function which
addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or
passed to the external function.

SCRATCHPAD is not supported for PARAMETER STYLE JAVA functions.

FINAL CALL or NO FINAL CALL

This optional clause specifies whether a final call is to be made to an
external function. The purpose of such a final call is to enable the external
function to free any system resources it has acquired. It can be useful in
conjunction with the SCRATCHPAD keyword in situations where the
external function acquires system resources such as memory and anchors
them in the scratchpad. If FINAL CALL is specified, then at execution
time:
* An additional argument is passed to the external function which
specifies the type of call. The types of calls are:

— Normal call: SQL arguments are passed and a result is expected to
be returned.

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

— First call: the first call to the external function for this reference to
the user-defined function in this SQL statement. The first call is a
normal call.

— Final call: a final call to the external function to enable the function
to free up resources. The final call is not a normal call. This final call
occurs at the following times:

- End-of-statement: This case occurs when the cursor is closed for
cursor-oriented statements, or when the statement is through
executing otherwise.

- End-of-parallel-task: This case occurs when the function is
executed by parallel tasks.

- End-of-transaction or interrupt: This case occurs when the normal
end-of-statement does not occur. For example, the logic of an
application may for some reason bypass the close of the cursor.
During this type of final call, no SQL statements may be issued
except for CLOSE cursor (SQLSTATE 38505). This type of final call
is indicated with a special value in the "call type” argument.

If a commit operation occurs while a cursor defined as WITH HOLD
is open, a final call is made at the subsequent close of the cursor or
at the end of the application.

If NO FINAL CALL is specified then no “call type” argument is passed
to the external function, and no final call is made.

FINAL CALL is not supported for PARAMETER STYLE JAVA functions.

ALLOW PARALLEL or DISALLOW PARALLEL

This optional clause specifies whether, for a single reference to the

function, the invocation of the function can be parallelized. In general, the

invocations of most scalar functions should be parallelizable, but there

may be functions (such as those depending on a single copy of a

scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW

PARALLEL are specified for a scalar function, then DB2 will accept this

specification. The following questions should be considered in

determining which keyword is appropriate for the function.

* Are all the UDF invocations completely independent of each other? If
YES, then specify ALLOW PARALLEL.

* Does each UDF invocation update the scratchpad, providing value(s)
that are of interest to the next invocation? (For example, the
incrementing of a counter.) If YES, then specify DISALLOW PARALLEL
or accept the default.

* Is there some external action performed by the UDF which should
happen only on one partition? If YES, then specify DISALLOW
PARALLEL or accept the default.

Chapter 1. Statements 205

CREATE FUNCTION (External Scalar)

206

* Is the scratchpad used, but only so that some expensive initialization
processing can be performed a minimal number of times? If YES, then
specify ALLOW PARALLEL.

In any case, the body of every external function should be in a directory
that is available on every partition of the database.

The default value is ALLOW PARALLEL, except if one or more of the
following options is specified in the statement.

* NOT DETERMINISTIC
* EXTERNAL ACTION
* SCRATCHPAD

* FINAL CALL

If any of these options is specified or implied, the default value is
DISALLOW PARALLEL.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the
function will inherit their initial values from the environment of the
invoking statement. For a function invoked in the select-statement of a
cursor, the initial values are inherited from the environment when the
cursor is opened. For a routine invoked in a nested object (for example a
trigger or view), the initial values are inherited from the runtime
environment (not inherited from the object definition).

No changes to the special registers are passed back to the invoker of the
function.

Non-updatable special registers, such as the datetime special registers,
reflect a property of the statement currently executing, and are therefore
set to their default values.

NOT FEDERATED

This optional clause indicates that federated objects cannot be used in any
SQL statement in the function. Using a federated object will result in an
error (SQLSTATE 55047).

NO DBINFO or DBINFO

This optional clause specifies whether certain specific information known
by DB2 will be passed to the UDF as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613) or
PARAMETER STYLE JAVA.

If DBINFO is specified, then a structure is passed to the UDF which
contains the following information:

* Data base name - the name of the currently connected database.

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

* Application ID - unique application ID which is established for each
connection to the database.

* Application Authorization ID - the application run-time authorization
ID, regardless of the nested UDFs in between this UDF and the
application.

* Code page - identifies the database code page.

* Schema name - under the exact same conditions as for Table name,
contains the name of the schema; otherwise blank.

* Table name - if and only if the UDF reference is either the right-hand
side of a SET clause in an UPDATE statement or an item in the
VALUES list of an INSERT statement, contains the unqualified name of
the table being updated or inserted; otherwise blank.

¢ Column name - under the exact same conditions as for Table name,
contains the name of the column being updated or inserted; otherwise
blank.

¢ Database version/release - identifies the version, release and
modification level of the database server invoking the UDF.

* Platform - contains the server’s platform type.

* Table function result column numbers - not applicable to external scalar
functions.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as either a
parameter or returns data type. If this clause is not specified, the default
group name DB2_FUNCTION is used. If the specified (or default)
group-name is not defined for a referenced structured type, an error is
raised (SQLSTATE 42741). If a required FROM SQL or TO SQL transform
function is not defined for the given group-name and structured type, an
error is raised (SQLSTATE 42744).

The transform functions, both FROM SQL and TO SQL, whether
designated or implied, must be SQL functions which properly transform
between the structured type and its built in type attributes.

PREDICATES
Defines the filtering and/or index extension exploitation performed when
this function is used in a predicate. A predicate-specification allows the
optional SELECTIVITY clause of a search-condition to be specified. If the
PREDICATES clause is specified, the function must be defined as
DETERMINISTIC with NO EXTERNAL ACTION (SQLSTATE 42613).

WHEN comparison-operator
Introduces a specific use of the function in a predicate with a

N_mon o oo __ o

comparison operator ("=", "<", ">", ">=", "<=", "<>").

Chapter 1. Statements 207

CREATE FUNCTION (External Scalar)

208

constant
Specifies a constant value with a data type comparable to the
RETURNS type of the function (SQLSTATE 42818). When a
predicate uses this function with the same comparison operator
and this constant, the specified filtering and index exploitation
will be considered by the optimizer.

EXPRESSION AS expression-name
Provides a name for an expression. When a predicate uses this
function with the same comparison operator and an expression,
filtering and index exploitation may be used. The expression is
assigned an expression name so that it can be used as a search
function argument. The expression-name cannot be the same as any
parameter-name of the function being created (SQLSTATE 42711).
When an expression is specified, the type of the expression is
identified.

FILTER USING

Allows specification of an external function or a case expression to be
used for additional filtering of the result table.

function-invocation

Specifies a filter function that can be used to perform additional
filtering of the result table. This is a version of the defined
function (used in the predicate) that reduces the number of rows
on which the user-defined predicate must be executed, to
determine if rows qualify. If the results produced by the index are
close to the results expected for the user-defined predicate,
applying the filtering function may be redundant. If not specified,
data filtering is not performed.

This function can use any parameter-name, the expression-name, or
constants as arguments (SQLSTATE 42703), and returns an integer
(SQLSTATE 428E4). A return value of 1 means the row is kept,
otherwise it is discarded.

This function must also:

* not be defined with LANGUAGE SQL (SQLSTATE 429B4)

* not be defined with NOT DETERMINISTIC or EXTERNAL
ACTION (SQLSTATE 42845)

* not have a structured data type as the data type of any of the
parameters (SQLSTATE 428E3)

* not include a subquery (SQLSTATE 428E4).
If an argument invokes another function or method, these four

rules are also enforced for this nested function or method.
However, system generated observer methods are allowed as

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

arguments to the filter function (or any function or method used
as an argument), as long as the argument evaluates to a built-in
data type.

The definer of the function must have EXECUTE privilege on the
specified filter function.

case-expression
Specifies a case expression for additional filtering of the result
table. The searched-when-clause and simple-when-clause can use
parameter-name, expression-name, or a constant (SQLSTATE 42703).
An external function with the rules specified in FILTER USING
function-invocation may be used as a result-expression. Any
function or method referenced in the case-expression must also
conform to the four rules listed under function-invocation.

Subqueries cannot be used anywhere in the case-expression
(SQLSTATE 428E4).

The case expression must return an integer (SQLSTATE 428E4). A
return value of 1 in the result-expression means that the row is
kept, otherwise it is discarded.

index-exploitation
Defines a set of rules in terms of the search method of an index
extension that can be used to exploit the index.

SEARCH BY INDEX EXTENSION index-extension-name
Identifies the index extension. The index-extension-name must
identify an existing index extension.

EXACT
Indicates that the index lookup is exact in terms of the predicate
evaluation. Use EXACT to tell DB2 that neither the original
user-defined predicate function or the filter need to be applied
after the index lookup. The EXACT predicate is useful when the
index lookup returns the same results as the predicate.

If EXACT is not specified, then the original user-defined predicate
is applied after index lookup. If the index is expected to provide
only an approximation of the predicate, do not specify the EXACT
option.

If the index lookup is not used, then the filter function and the
original predicate have to be applied.

exploitation-rule
Describes the search targets and search arguments and how they can
be used to perform the index search through a search method defined
in the index extension.

Chapter 1. Statements 209

CREATE FUNCTION (External Scalar)

WHEN KEY (parameter-namel)
This defines the search target. Only one search target can be
specified for a key. The parameter-namel value identifies parameter
names of the defined function (SQLSTATE 42703 or 428ES).

The data type of parameter-namel must match that of the source
key specified in the index extension (SQLSTATE 428EY). The
match must be exact for built-in and distinct data types and
within the same structured type hierarchy for structured types.

This clause is true when the values of the named parameter are
columns that are covered by an index based on the index
extension specified.

USE search-method-name(parameter-name2,...)
This defines the search argument. It identifies which search
method to use from those defined in the index extension. The
search-method-name must match a search method defined in the
index extension (SQLSTATE 42743). The parameter-name2 values
identify parameter names of the defined function or the
expression-name in the EXPRESSION AS clause (SQLSTATE 42703).
It must be different from any parameter name specified in the
search target (SQLSTATE 428E9). The number of parameters and
the data type of each parameter-name2 must match the parameters
defined for the search method in the index extension (SQLSTATE
42816). The match must be exact for built-in and distinct data
types and within the same structured type hierarchy for
structured types.

Notes:
* Compatibilities
— For compatibility with DB2 UDB for OS/390 and z/OS:
- The following syntax is accepted as the default behavior:
e ASUTIME NO LIMIT
* NO COLLID
* PROGRAM TYPE SUB
e STAY RESIDENT NO
— For compatibility with previous versions of DB2:

- PARAMETER STYLE DB2SQL can be specified in place of
PARAMETER STYLE SQL

- NOT VARIANT can be specified in place of DETERMINISTIC, and
VARIANT can be specified in place of NOT DETERMINISTIC

- NULL CALL can be specified in place of CALLED ON NULL INPUT,
and NOT NULL CALL can be specified in place of RETURNS NULL
ON NULL INPUT

210 SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

Determining whether one data type is castable to another data type does
not consider length or precision and scale for parameterized data types
such as CHAR and DECIMAL. Therefore, errors may occur when using a
function as a result of attempting to cast a value of the source data type to
a value of the target data type. For example, VARCHAR is castable to
DATE but if the source type is actually defined as VARCHAR(5), an error
will occur when using the function.

When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values
(see “Promotion of data types”). For example, a constant which may be
used as an input value could have a built-in data type different from the
one expected and, more significantly, may not be promoted to the data type
expected. Based on the rules for promotion, it is generally recommended to
use the following data types for parameters:

— INTEGER instead of SMALLINT

- DOUBLE instead of REAL

- VARCHAR instead of CHAR

— VARGRAPHIC instead of GRAPHIC

For portability of UDFs across platforms the following data types should
not be used:

— FLOAT- use DOUBLE or REAL instead.

— NUMERIC- use DECIMAL instead.

— LONG VARCHAR- use CLOB (or BLOB) instead.

A function and a method may not be in an overriding relationship
(SQLSTATE 42745). For more information about overriding, see “CREATE
TYPE (Structured)”.

A function may not have the same signature as a method (comparing the
first parameter-type of the function with the subject-type of the method)
(SQLSTATE 42723).

Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

Only routines defined as NO SQL can be used to define an index extension
(SQLSTATE 428FE8).

Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function
can access a table that is being modified by the statement which invoked
the function (SQLSTATE 57053). For example, suppose the user-defined
function BONUS() is defined as READS SQL DATA. If the statement
UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is
invoked, no SQL statement in the BONUS function can read from the
EMPLOYEE table.

Privileges

Chapter 1. Statements 211

CREATE FUNCTION (External Scalar)

212

— The definer of a function always receives the EXECUTE privilege WITH
GRANT OPTION on the function, as well as the right to drop the
function.

— When the function is used in an SQL statement, the function definer
must have the EXECUTE privilege on any packages used by the
function.

Examples:

Example 1: Pellow is registering the CENTRE function in his PELLOW
schema. Let those keywords that will default do so, and let the system
provide a function specific name:
CREATE FUNCTION CENTRE (INT,FLOAT)

RETURNS FLOAT

EXTERNAL NAME 'mod!middle’

LANGUAGE C

PARAMETER STYLE SQL

DETERMINISTIC

NO sSQL

NO EXTERNAL ACTION

Example 2: Now, McBride (who has DBADM authority) is registering another
CENTRE function in the PELLOW schema, giving it an explicit specific name
for subsequent data definition language use, and explicitly providing all
keyword values. Note also that this function uses a scratchpad and
presumably is accumulating data there that affects subsequent results. Since
DISALLOW PARALLEL is specified, any reference to the function is not
parallelized and therefore a single scratchpad is used to perform some
one-time only initialization and save the results.
CREATE FUNCTION PELLOW.CENTRE (FLOAT, FLOAT, FLOAT)

RETURNS DECIMAL(8,4) CAST FROM FLOAT

SPECIFIC FOCUS92

EXTERNAL NAME 'effects!focalpt'

LANGUAGE C PARAMETER STYLE SQL

DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION

SCRATCHPAD NO FINAL CALL

DISALLOW PARALLEL

Example 3: The following is the C language user-defined function program
written to implement the rule:

output = 2 * input - 4

returning NULL if and only if the input is null. It could be written even more
simply (that is, without null checking), if the CREATE FUNCTION statement
had used NOT NULL CALL. The CREATE FUNCTION statement:

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

CREATE FUNCTION ntestl (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME 'ntestl!nudftl’
LANGUAGE C PARAMETER STYLE SQL
DETERMINISTIC NOT FENCED NULL CALL
NO SQL NO EXTERNAL ACTION

The program code:

#include "sqlsystm.h"

/* NUDFT1 IS A USER _DEFINED SCALAR FUNCTION =*/
/* udftl accepts smallint input

and produces smallint output

implementing the rule:

if (input is null)

set output = null;

else

set output = 2 * input - 4;

*/

void SQL_API FN nudftl

(short *input, /* ptr to input arg */

short *output, /* ptr to where result goes */

short *input_ind, /* ptr to input indicator var =/
short xoutput_ind, /* ptr to output indicator var */
char sqlstate[6], /* sqlstate, allows for null-term =*/

char fname[28], /* fully qual func name, nul-term =*/
char finst[19], /* func specific name, null-term =*/
char msgtext[71]) /* msg text buffer, null-term =/

{

/* first test for null input =/

if (*input_ind == -1)

{

/* input is null, likewise output */

*xoutput_ind = -1;

}

else

{

/* input is not null. set output to 2*input-4 =/
xoutput = 2 * (*input) - 4;

/* and set out null indicator to zero */
*output_ind = 0;

}

/* signal successful completion by leaving sqlstate as is */
/* and exit */

return;

}

/* end of UDF: NUDFT1 =*/

Example 4: The following registers a Java UDF which returns the position of
the first vowel in a string. The UDF is written in Java, is to be run fenced, and
is the findvwl method of class javaUDFs.

CREATE FUNCTION findv (CLOB(100K))

RETURNS INTEGER
FENCED

Chapter 1. Statements 213

CREATE FUNCTION (External Scalar)

214

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'javaUDFs.findvwl'
NO EXTERNAL ACTION

CALLED ON NULL INPUT
DETERMINISTIC

NO SQL

Example 5: This example outlines a user-defined predicate WITHIN that takes
two parameters, gl and g2, of type SHAPE as input:

CREATE FUNCTION within (gl SHAPE, g2 SHAPE)

RETURNS INTEGER

LANGUAGE C

PARAMETER STYLE SQL

NOT VARIANT

NOT FENCED

NO SQL

NO EXTERNAL ACTION

EXTERNAL NAME 'db2sefn!SDESpatilRelations'

PREDICATES

WHEN = 1

FILTER USING mbrOverlap(gl..xmin, gl..ymin, gl..xmax, gl..max,
g2..xmin, g2..ymin, g2..xmax, g2..ymax)

SEARCH BY INDEX EXTENSION gridIndex

WHEN KEY(gl) USE withinExpTRule(g2)

WHEN KEY(g2) USE withinExplRule(gl)

The description of the WITHIN function is similar to that of any user-defined
function, but the following additions indicate that this function can be used in
a user-defined predicate.

* PREDICATES WHEN = 1 indicates that when this function appears as
within(gl, g2) =1

in the WHERE clause of a DML statement, the predicate is to be treated as
a user-defined predicate and the index defined by the index extension
gridIndex should be used to retrieve rows that satisfy this predicate. If a
constant is specified, the constant specified during the DML statement has
to match exactly the constant specified in the create index statement. This
condition is provided mainly to cover Boolean expression where the result
type is either a 1 or a 0. For other cases, the EXPRESSION clause is a better
choice.

* FILTER USING mbrOverlap refers to a filtering function mbrOverlap,
which is a cheaper version of the WITHIN predicate. In the above example,
the mbrOverlap function takes the minimum bounding rectangles as input
and quickly determines if they overlap or not. If the minimum bounding
rectangles of the two input shapes do not overlap, then g1 will not be
contained with g2. Therefore the tuple can be safely discarded, avoiding the
application of the expensive WITHIN predicate.

SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

* The SEARCH BY INDEX EXTENSION clause indicates that combinations
of index extension and search target can be used for this user-defined
predicate.

Example 6: This example outlines a user-defined predicate DISTANCE that
takes two parameters, P1 and P2, of type POINT as input:
CREATE FUNCTION distance (P1 POINT, P2 POINT)

RETURNS INTEGER

LANGUAGE C

PARAMETER STYLE SQL

NOT VARIANT

NOT FENCED

NO sSQL

NO EXTERNAL ACTION

EXTERNAL NAME 'db2sefn!SDEDistances’

PREDICATES

WHEN > EXPRESSION AS distExpr

SEARCH BY INDEX EXTENSION gridIndex

WHEN KEY(P1) USE distanceGrRule(P2, distExpr)

WHEN KEY(P2) USE distanceGrRule(P1, distExpr)

The description of the DISTANCE function is similar to that of any
user-defined function, but the following additions indicate that when this
function is used in a predicate, that predicate is a user-defined predicate.

* PREDICATES WHEN > EXPRESSION AS distExpr is another valid
predicate specification. When an expression is specified in the WHEN
clause, the result type of that expression is used for determining if the
predicate is a user-defined predicate in the DML statement. For example:

SELECT T1.C1

FROM T1, T2
WHERE distance (T1.P1, T2.P1) > T2.(C2

The predicate specification distance takes two parameters as input and
compares the results with T2.C2, which is of type INTEGER. Since only the
data type of the right hand side expression matters, (as opposed to using a
specific constant), it is better to choose the EXPRESSION clause in the
CREATE FUNCTION DDL for specifying a wildcard as the comparison
value.

Alternatively, the following is also a valid user-defined predicate:

SELECT T1.C1
FROM T1, T2
WHERE distance(T1.P1, T2.P1) > distance (T1.P2, T2.P2)

There is currently a restriction that only the right hand side is treated as the

expression; the term on the left hand side is the user-defined function for
the user-defined predicate.

Chapter 1. Statements 215

CREATE FUNCTION (External Scalar)

216

The SEARCH BY INDEX EXTENSION clause indicates that combinations
of index extension and search target can be used for this
user-defined-predicate. In the case of the distance function, the expression
identified as distExpr is also one of the search arguments that is passed to
the range-producer function (defined as part of the index extension). The
expression identifier is used to define a name for the expression so that it is
passed to the range-producer function as an argument.

Related reference:

“Basic predicate” in the SQL Reference, Volume 1

‘CREATE TYPE (Structured)” on page 427

‘CREATE FUNCTION (SQL Scalar, Table or Row)” on page 254

“SQL statements allowed in routines” in the SQL Reference, Volume 1
“Special registers” in the SQL Reference, Volume 1

“Promotion of data types” in the SQL Reference, Volume 1

“Casting between data types” in the SQL Reference, Volume 1

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

CREATE FUNCTION (External Table)

This statement is used to register a user-defined external table function with
an application server.

A table function may be used in the FROM clause of a SELECT, and returns a
table to the SELECT by returning one row at a time.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ CREATE_EXTERNAL_ROUTINE authority on the database and at least one
of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the function does not exist

— CREATEIN privilege on the schema, if the schema name of the function
exists.

To create a not-fenced function, the privileges held by the authorization ID of
the statement must also include at least one of the following:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»»—CREATE FUNCTION—function-name >

Chapter 1. Statements 217

CREATE FUNCTION (External Table)
—() —@ >

A4 B i data-typel
parameter-name

I—AS LOCATOR—|

»—RETURNS TABLE—(—Y—column-name—data-type2) —@ >

I—AS LOCATOR—|

> |_ _| @ -EXTERNAL |_ {
SPECIFIC—specific-name NAME—[’string’ jJ
er

identifi

(1)
»—LANGUAGE CT’—PARAMETER STYLE—[DBZGENERAL {] >
EJAVA SQLJ
OLE

—NOT DETERMINISTIC— —FENCED

Yy
o
®
v

—DETERMINISTIC—— —FENCED— THREADSAFE
NOT THREADSAFE

THREADSAFE
LNOT FENCED—.J_——I—

l—RETURNS NULL ON NULL INPUT—

>

|—CALLED ON NULL INPUT———

l—READS SQL DATA— |—STATIC DISPATCH—l l—EXTERNAL ACTION——m
® ® B ® >
i:NO SQL——— NO EXTERNAL ACTION—
CONTAINS SQL—
|—N0 SCRATCHPAD—— l—NO FINAL CALL—
> o @-DISALLOW PARALLEL—@———>
L |—100— |—FINAL CALL—
SCRATCHPAD
|—Zength—
|—N0 DBINFO—

C T TeT]
DBINFO—— CARDINALITY—integer TRANSFORM GROUP—group-name

218 SQL Reference, Volume 2

CREATE FUNCTION (External Table)

INHERIT SPECIAL REGISTERS NOT FEDERATED
[1 ol 1

—@ @ @ >

Notes:

1 For information on creating LANGUAGE OLE DB external table
functions, see “CREATE FUNCTION (OLE DB External Table)”. For
information on creating LANGUAGE SQL table functions, see “CREATE
FUNCTION (SQL Scalar, Table or Row)”.

Description:

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS’
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a function-name (SQLSTATE 42939). The
names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

parameter-name
Specifies an optional name for the parameter that is distinct from the
names of all other parameters in this function.

Chapter 1. Statements 219

CREATE FUNCTION (External Table)

(data-typel,...)
Identifies the number of input parameters of the function, and specifies
the data type of each parameter. One entry in the list must be specified
for each parameter that the function will expect to receive. No more than
90 parameters are allowed. If this limit is exceeded, an error (SQLSTATE
54023) is raised.

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Lengths,
precisions, and scales are not considered in this type comparison.
Therefore CHAR(8) and CHAR(35) are considered to be the same type, as
are DECIMAL(11,2) and DECIMAL (4,3). For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. There is
some further bundling of types that causes them to be treated as the same
type for this purpose, such as DECIMAL and NUMERIC. A duplicate
signature raises an SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

the second and fourth statements would fail because they are considered
to be a duplicate functions.

data-typel

Specifies the data type of the parameter.

* SQL data type specifications and abbreviations which may be
specified in the data-type definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the function may be specified.

* DECIMAL (and NUMERIC) are invalid with LANGUAGE C and
OLE (SQLSTATE 42815).

* REF(type-name) may be specified as the data type of a parameter.
However, such a parameter must be unscoped (SQLSTATE 42997).

e Structured types may be specified, provided that appropriate
transform functions exist in the associated transform group.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB

220 SQL Reference, Volume 2

CREATE FUNCTION (External Table)

type, the AS LOCATOR clause can be added. This indicates that a
LOB locator is to be passed to the UDF instead of the actual
value. This saves greatly in the number of bytes passed to the
UDF, and may save as well in performance, particularly in the
case where only a few bytes of the value are actually of interest to
the UDE.

Here is an example which illustrates the use of the AS LOCATOR
clause in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)

which assumes that IMAGE is a distinct type based on one of the
LOB types.

Note also that for argument promotion purposes, the AS
LOCATOR clause has no effect. In the example the types are
considered to be CLOB and IMAGE respectively, which would
mean that a CHAR or VARCHAR argument could be passed to
the function as the first argument. Likewise, the AS LOCATOR
has no effect on the function signature, which is used in matching
the function (a) when referenced in DML, by a process called
"function resolution”, and (b) when referenced in a DDL statement
such as COMMENT ON or DROP. In fact the clause may or may
not be used in COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the function is FENCED and has the NO SQL option, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that
follow this keyword delimit a list of the names and types of the columns
of the table, resembling the style of a simple CREATE TABLE statement
which has no additional specifications (constraints, for example). No more
than 255 columns are allowed (SQLSTATE 54011).

column-name
Specifies the name of this column. The name cannot be qualified and
the same name cannot be used for more than one column of the table.

data-type2
Specifies the data type of the column, and can be any data type
supported for a parameter of a UDF written in the particular
language, except for structured types (SQLSTATE 42997).

Chapter 1. Statements 221

CREATE FUNCTION (External Table)

222

AS LOCATOR
When data-type2 is a LOB type or distinct type based on a LOB
type, the use of this option indicates that the function is returning
a locator for the LOB value that is instantiated in the result table.

The valid types for use with this clause are discussed in “CREATE
FUNCTION (External Scalar)”.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL

This clause indicates that the CREATE FUNCTION statement is being
used to register a new function based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

NAME ’string’
This clause identifies the user-written code which implements the
function being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.
* For LANGUAGE C:
The string specified is the library name and function within library,
which the database manager invokes to execute the user-defined
function being CREATEd. The library (and the function within the
library) do not need to exist when the CREATE FUNCTION
statement is performed. However, when the function is used in an

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

SQL statement, the library and function within the library must
exist and be accessible from the database server machine.

> library_id ’ <
_[crbsolulte_path_idJ |—!—func_idJ

Extraneous blanks are not permitted within the single quotes.

library_id
Identifies the library name containing the function. The
database manager will look for the library in the
.../sqllib/function directory (UNIX-based systems), or
..\instance_name\function directory (Windows 32-bit operating
systems as specified by the DB2INSTPROF registry variable),
where the database manager will locate the controlling sqllib
directory which is being used to run the database manager. For
example, the controlling sqllib directory in UNIX-based systems
is /u/$DB2INSTANCE/sqllib.

If ‘myfunc” were the library_id in a UNIX-based system it would
cause the database manager to look for the function in library
/u/production/sqllib/function/myfunc, provided the database
manager is being run from /u/production.

For Windows 32-bit operating systems, the database manager
will look in the LIBPATH or PATH if the library_id is not located
in the function directory.

absolute_path_id
Identifies the full path name of the function.

In a UNIX-based system, for example,
’/u/jchui/mylib/myfunc’” would cause the database manager to
look in /u/jchui/mylib for the myfunc function.

On Windows 32-bit operating systems ’d:\mylib\myfunc’
would cause the database manager to load the myfunc.dll file
from the d:\mylib directory.

! func_id
Identifies the entry point name of the function to be invoked.
The ! serves as a delimiter between the library id and the
function id. If ! func_id is omitted, the database manager will
use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ‘'mymod!func8” would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
func8 within that library.

Chapter 1. Statements 223

CREATE FUNCTION (External Table)

224

On Windows 32-bit operating systems, ‘'mymod!func8” would
direct the database manager to load the mymod.dll file and call
the func8() function in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

In any case, the body of every external function should be in a
directory that is available on every partition of the database.

For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The
class identifier and method identifier do not need to exist when the
CREATE FUNCTION statement is performed. If a jar_id is specified,
it must exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the
method identifier must exist and be accessible from the database
server machine.

»»—' —L—_l—class id—[.:l—method id— <
Jar_id : !

Extraneous blanks are not permitted within the single quotes.

jar_id
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier,

or a schema qualified identifier. Examples are ‘'myJar’ and
‘mySchema.myJar’

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ‘'myPacks.UserFuncs’.
The Java virtual machine will look in directory
".../myPacks/UserFuncs/’ for the classes. On Windows 32-bit
operating systems, the Java virtual machine will look in
directory "...\myPacks\UserFuncs\’.

method_id
Identifies the method name of the Java object to be invoked.

For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier, which the database
manager invokes to execute the user-defined function being
CREATEd. The programmatic identifier or class identifier, and

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

method identifier do not need to exist when the CREATE
FUNCTION statement is performed. However, when the function is
used in an SQL statement, the method identifier must exist and be
accessible from the database server machine, otherwise an error
(SQLSTATE 42724) is raised.

> —[progid !—method_id—' <
clsid——l_

Extraneous blanks are not permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE
object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn—nnnn—nnnn—nnnn—nnnnnnnnnnnn}

where 'n’ is an alphanumeric character. clsid is not interpreted
by the database manager but only forwarded to the OLE APIs
at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier

This clause identifies the name of the user-written code which
implements the function being defined. The identifier specified is an
SQL identifier. The SQL identifier is used as the library-id in the string.
Unless it is a delimited identifier, the identifier is folded to upper
case. If the identifier is qualified with a schema name, the schema
name portion is ignored. This form of NAME can only be used with
LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the user-defined function body is written.

C

This means the database manager will call the user-defined
function as if it were a C function. The user-defined function must
conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

Chapter 1. Statements 225

CREATE FUNCTION (External Table)

JAVA This means the database manager will call the user-defined
function as a method in a Java class.

OLE This means the database manager will call the user-defined
function as if it were a method exposed by an OLE automation
object. The user-defined function must conform with the OLE
automation data types and invocation mechanism, as described in
the OLE Automation Programmer’s Reference.

LANGUAGE OLE is only supported for user-defined functions
stored in DB2 for Windows 32-bit operating systems.

For information on creating LANGUAGE OLE DB external table
functions, see “CREATE FUNCTION (OLE DB External Table)”.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from functions.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This can only be specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

SQL
Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C
language calling and linkage conventions. This must be specified
when LANGUAGE C or LANGUAGE OLE is used.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC table function
would be a function that retrieves data from a data source such as a file.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to
run in the database manager operating environment’s process or address
space (NOT FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager protects its
internal resources (for example, data buffers) from access by the function.

226 SQL Reference, Volume 2

CREATE FUNCTION (External Table)

Most functions will have the option of running as FENCED or NOT
FENCED. In general, a function running as FENCED will not perform as
well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions not adequately coded, reviewed and
tested can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent failures
that might occur, but cannot guarantee complete integrity when NOT
FENCED user defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or
NOT THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR
clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a
user-defined function as NOT FENCED.

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:

* If the function is defined as THREADSAFE, the database manager can
invoke the function in the same process as other routines. In general, to
be threadsafe, a function should not use any global or static data areas.
Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED functions can be
THREADSAFE.

* If the function is defined as NOT THREADSAFE, the database manager
will never invoke the function in the same process as another routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE
is JAVA. For all other languages, NOT THREADSAFE is the default. If the
function is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to

Chapter 1. Statements 227

CREATE FUNCTION (External Table)

228

have no parameters, then of course this null argument condition cannot
arise, and it does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at table
function OPEN time, any of the function’s arguments are null, then the
user-defined function is not called. The result of the attempted table
function scan is the empty table (a table with no rows).

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDFE.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what
type.

NO SQL
Indicates that the function cannot execute any SQL statements
(SQLSTATE 38001).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the function (SQLSTATE 38004 or 42985).
Statements that are not supported in any function return a different
error (SQLSTATE 38003 or 42985).

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can
be included in the function (SQLSTATE 38002 or 42985). Statements
that are not supported in any function return a different error
(SQLSTATE 38003 or 42985).

STATIC DISPATCH

This optional clause indicates that at function resolution time, DB2
chooses a function based on the static types (declared types) of the
parameters of the function.

NO EXTERNAL ACTION or EXTERNAL ACTION

This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions have no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for
the function to “save state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:

* length, if specified, sets the size of the scratchpad in bytes and must be
between 1 and 32 767 (SQLSTATE 42820). The default value is 100.

e It is initialized to all X'00"s.

* Its scope is the SQL statement. There is one scratchpad per reference to
the external function in the SQL statement. So if the UDFX function in
the following statement is defined with the SCRATCHPAD keyword,
two scratchpads would be assigned.

SELECT A.C1, B.C2
FROM TABLE (UDFX(:hvl)) AS A,
TABLE (UDFX(:hvl)) AS B
WHERE ...

* It is persistent. It is initialized at the beginning of the execution of the
statement, and can be used by the external table function to preserve
the state of the scratchpad from one call to the next. If the FINAL CALL
keyword is also specified for the UDF, then the scratchpad is NEVER
altered by DB2, and any resources anchored in the scratchpad should
be released when the special FINAL call is made.

If NO FINAL CALL is specified or defaulted, then the external table
function should clean up any such resources on the CLOSE call, as DB2
will re-initialize the scratchpad on each OPEN call. This determination
of FINAL CALL or NO FINAL CALL and the associated behavior of
the scratchpad could be an important consideration, particularly if the
table function will be used in a subquery or join, since that is when
multiple OPEN calls can occur during the execution of a statement.

* It can be used as a central point for system resources (for example,
memory) which the external function might acquire. The function could
acquire the memory on the first call, keep its address in the scratchpad,
and refer to it in subsequent calls.

(As outlined above, the FINAL CALL/NO FINAL CALL keyword is
used to control the re-initialization of the scratchpad, and also dictates
when the external table function should release resources anchored in
the scratchpad.)

If SCRATCHPAD is specified, then on each invocation of the user-defined

function an additional argument is passed to the external function which
addresses the scratchpad.

Chapter 1. Statements 229

CREATE FUNCTION (External Table)

230

If NO SCRATCHPAD is specified then no scratchpad is allocated or
passed to the external function.

FINAL CALL or NO FINAL CALL

This optional clause specifies whether a final call (and a separate first call)
is to be made to an external function. It also controls when the scratchpad
is re-initialized. If NO FINAL CALL is specified, then DB2 can only make
three types of calls to the table function: open, fetch and close. However,
if FINAL CALL is specified, then in addition to open, fetch and close, a
first call and a final call can be made to the table function.

For external table functions, the call-type argument is ALWAYS present,
regardless of which option is chosen.

If the final call is being made because of an interrupt or
end-of-transaction, the UDF may not issue any SQL statements except for
CLOSE cursor (SQLSTATE 38505). A special value is passed in the "call
type” argument for these special final call situations.

DISALLOW PARALLEL

This clause specifies that, for a single reference to the function, the
invocation of the function cannot be parallelized. Table functions are
always run on a single partition.

NO DBINFO or DBINFO

This optional clause specifies whether certain specific information known
by DB2 will be passed to the UDF as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613).

If DBINFO is specified, then a structure is passed to the UDF which
contains the following information:
¢ Data base name - the name of the currently connected database.

* Application ID - unique application ID which is established for each
connection to the database.

* Application Authorization ID - the application run-time authorization
ID, regardless of the nested UDFs in between this UDF and the
application.

* Code page - identifies the database code page.

* Schema name - not applicable to external table functions.
* Table name - not applicable to external table functions.

* Column name - not applicable to external table functions.

e Database version/release- identifies the version, release and
modification level of the database server invoking the UDE

* Platform - contains the server’s platform type.

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

* Table function result column numbers - an array of the numbers of the
table function result columns actually needed for the particular
statement referencing the function. Only provided for table functions, it
enables the UDF to optimize by only returning the required column
values instead of all column values.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows

to be returned by the function for optimization purposes. Valid values for
integer range from 0 to 9 223 372 036 854 775 807 inclusive.

If the CARDINALITY clause is not specified for a table function, DB2 will
assume a finite value as a default- the same value assumed for tables for
which the RUNSTATS utility has not gathered statistics.

Warning: if a function does in fact have infinite cardinality, i.e. it returns a
row every time it is called to do so, never returning the "end-of-table”
condition, then queries which require the "end-of-table” condition to
correctly function will be infinite, and will have to be interrupted.
Examples of such queries are those involving GROUP BY and ORDER BY.
The user is advised to not write such UDFs.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as a parameter
data type. If this clause is not specified, the default group name
DB2_FUNCTION is used. If the specified (or default) group-name is not
defined for a referenced structured type, an error results (SQLSTATE
42741). If a required FROM SQL transform function is not defined for the
given group-name and structured type, an error results (SQLSTATE
42744).

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the
function will inherit their initial values from the environment of the
invoking statement. For a function invoked in the select-statement of a
cursor, the initial values are inherited from the environment when the
cursor is opened. For a routine invoked in a nested object (for example a
trigger or view), the initial values are inherited from the runtime
environment (not inherited from the object definition).

No changes to the special registers are passed back to the invoker of the
function.

Non-updatable special registers, such as the datetime special registers,
reflect a property of the statement currently executing, and are therefore
set to their default values.

Chapter 1. Statements 231

CREATE FUNCTION (External Table)

232

NOT FEDERATED

This optional clause indicates that federated objects cannot be used in any
SQL statement in the function. Using a federated object will result in an
error (SQLSTATE 55047).

Notes:

When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values.
For example, a constant which may be used as an input value could have a
built-in data type that is different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the
rules for promotion, it is generally recommended to use the following data
types for parameters:

— INTEGER instead of SMALLINT

— DOUBLE instead of REAL

— VARCHAR instead of CHAR

- VARGRAPHIC instead of GRAPHIC

For portability of UDFs across platforms, it is recommended to use the
following data types:

— DOUBLE or REAL instead of FLOAT

— DECIMAL instead of NUMERIC

— CLOB (or BLOB) instead of LONG VARCHAR

Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.
Only routines defined as NO SQL can be used to define an index extension
(SQLSTATE 428F8).
Table access restrictions
If a function is defined as READS SQL DATA, no statement in the function
can access a table that is being modified by the statement which invoked
the function (SQLSTATE 57053). For example, suppose the user-defined
function BONUS() is defined as READS SQL DATA. If the statement
UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is
invoked, no SQL statement in the BONUS function can read from the
EMPLOYEE table.
Compatibilities
— For compatibility with DB2 for z/OS and OS/390:

- The following syntax is accepted as the default behavior:

* ASUTIME NO LIMIT

* NO COLLID

SQL Reference, Volume 2

CREATE FUNCTION (External Table)

* PROGRAM TYPE SUB
* STAY RESIDENT NO
— For compatibility with previous versions of DB2:

- PARAMETER STYLE DB2SQL can be specified in place of
PARAMETER STYLE SQL

- NOT VARIANT can be specified in place of DETERMINISTIC
- VARIANT can be specified in place of NOT DETERMINISTIC
- NULL CALL can be specified in place of CALLED ON NULL INPUT

- NOT NULL CALL can be specified in place of RETURNS NULL ON
NULL INPUT

* Privileges
— The definer of a function always receives the EXECUTE privilege WITH

GRANT OPTION on the function, as well as the right to drop the
function.

— When the function is used in an SQL statement, the function definer
must have the EXECUTE privilege on any packages used by the
function.

Examples:

Example 1: The following registers a table function written to return a row
consisting of a single document identifier column for each known document
in a text management system. The first parameter matches a given subject
area and the second parameter contains a given string.

Within the context of a single session, the UDF will always return the same
table, and therefore it is defined as DETERMINISTIC. Note the RETURNS
clause which defines the output from DOCMATCH. FINAL CALL must be
specified for each table function. In addition, the DISALLOW PARALLEL
keyword is added as table functions cannot operate in parallel. Although the
size of the output for DOCMATCH is highly variable, CARDINALITY 20 is a
representative value, and is specified to help the DB2 optimizer.

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))
EXTERNAL NAME '/common/docfuncs/rajiv/udfmatch'
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

Chapter 1. Statements 233

CREATE FUNCTION (External Table)

Example 2: The following registers an OLE table function that is used to
retrieve message header information and the partial message text of messages
in Microsoft Exchange.

CREATE FUNCTION MAIL()

RETURNS TABLE (TIMERECEIVED DATE,
SUBJECT VARCHAR(15),
SIZE INTEGER,
TEXT VARCHAR(30))

EXTERNAL NAME 'tfmail.header!list'

LANGUAGE OLE

PARAMETER STYLE SQL

NOT DETERMINISTIC

FENCED

CALLED ON NULL INPUT

SCRATCHPAD

FINAL CALL

NO SQL

EXTERNAL ACTION

DISALLOW PARALLEL

Related reference:

* “Basic predicate” in the SQL Reference, Volume 1

[‘CREATE FUNCTION (OLE DB External Table)” on page 235
[‘CREATE FUNCTION (SQL Scalar, Table or Row)” on page 254
[‘CREATE FUNCTION (External Scalar)” on page 190

“SQL statements allowed in routines” in the SQL Reference, Volume 1

* “Special registers” in the SQL Reference, Volume 1
* “Promotion of data types” in the SQL Reference, Volume 1

234 SQL Reference, Volume 2

CREATE FUNCTION (OLE DB External Table)

CREATE FUNCTION (OLE DB External Table)

This statement is used to register a user-defined OLE DB external table
function to access data from an OLE DB provider.

A table function may be used in the FROM clause of a SELECT.
Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

* CREATE_EXTERNAL_ROUTINE authority on the database, and at least one
of:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the function does not exist

— CREATEIN privilege on the schema, if the schema name of the function
exists.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»»—CREATE FUNCTION—function-name—(| —@ >

)
data-typel —|
I—parame ter-name—l

»—RETURNS TABLE—(— column-name—data—typeZL)—. |_ _| >
SPECIFIC—specific-name

Chapter 1. Statements 235

CREATE FUNCTION (OLE DB External Table)

236

|—NOT DETERMINISTIC—

>—@—-EXTERNAL—NAME—'string’ —@—LANGUAGE——OLEDB——@

|—DETERMINISTIC

l—STATIC DISPATCH—l |—RETURNS NULL ON NULL INPUT— l—NO EXTERNAL ACTION—

>

|—CALLED ON NULL INPUT |—EXTERNAL ACTION——

@
|—CARDINALITY—integer—|

—@ »><

Description:

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS’
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a function-name (SQLSTATE 42939). The
names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

SQL Reference, Volume 2

CREATE FUNCTION (OLE DB External Table)

parameter-name
Specifies an optional name for the parameter.

data-typel
Identifies the input parameter of the function, and specifies the data type
of the parameter. If no input parameter is specified, then data is retrieved
from the external source possibly subsetted through query optimization.
The input parameter can be any character or graphic string data type and
it passes command text to an OLE DB provider.

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Length is
not considered in this type comparison. Therefore CHAR(8) and
CHAR(35) are considered to be the same type. For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. A
duplicate signature raises an SQL error (SQLSTATE 42723).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that
follow this keyword delimit a list of the names and types of the columns
of the table, resembling the style of a simple CREATE TABLE statement
which has no additional specifications (constraints, for example).

column-name
Specifies the name of the column which must be the same as the
corresponding rowset column name. The name cannot be qualified
and the same name cannot be used for more than one column of the
table.

data-type2
Specifies the data type of the column.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

Chapter 1. Statements 237

CREATE FUNCTION (OLE DB External Table)

238

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL NAME ’string’

This clause identifies the external table and an OLE DB provider.
The 'string' option is a string constant with a maximum of 254 characters.

The string specified is used to establish a connection and session with a
OLE DB provider, and retrieve data from a rowset. The OLE DB provider
and data source do not need to exist when the CREATE FUNCTION
statement is performed.

»»—' server—!

I—rowsetJ |
!—L—_l—!—connectstring
rowset |—!—COLLATIN(:‘._SEQUENCE =—|:N-|—I
Y

server
Identifies the local name of a data source as defined by “CREATE
SERVER”.

rowset
Identifies the rowset (table) exposed by the OLE DB provider. Fully
qualified table names must be provided for OLE DB providers that
support catalog or schema names.

connectstring
String version of the initialization properties needed to connect to a
data source. The basic format of a connection string is based on the
ODBC connection string. The string contains a series of
keyword/value pairs separated by semicolons. The equal sign (=)
separates each keyword and its value. Keywords are the descriptions
of the OLE DB initialization properties (property set
DBPROPSET_DBINIT) or provider-specific keywords.

COLLATING_SEQUENCE
Specifies whether the data source uses the same collating sequence as
DB2 Universal Database. For details, see “CREATE SERVER”. Valid
values are as follows:

Y = Same collating sequence
N = Different collating sequence

SQL Reference, Volume 2

CREATE FUNCTION (OLE DB External Table)

If COLLATING_SEQUENCE is not specified, then the data source is
assumed to have a different collating sequence from DB2 Universal
Database.

If server is provided, connectstring or COLLATING_SEQUENCE are not
allowed in the external name. They are defined as server options
CONNECTSTRING and COLLATING_SEQUENCE. If no server is
provided, a connectstring must be provided. If rowset is not provided, the
table function must have an input parameter to pass through command
text to the OLE DB provider.

LANGUAGE OLEDB
This means the database manager will deploy a built-in generic OLE DB
consumer to retrieve data from the OLE DB provider. No table function
implementation is required by the developer.

LANGUAGE OLEDB table functions can be created on any platform, but
only executed on platforms supported by Microsoft OLE DB.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC.

STATIC DISPATCH
This optional clause indicates that at function resolution time, DB2
chooses a function based on the static types (declared types) of the
parameters of the function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to
have no parameters, then of course this null argument condition cannot
arise.

If RETURNS NULL ON NULL INPUT is specified and if at execution time
any one of the function’s arguments is null, the user-defined function is
not called and the result is the empty table; that is, a table with no rows.

If CALLED ON NULL INPUT is specified, then at execution time
regardless of whether any arguments are null, the user-defined function is
called. It can return an empty table or not, depending on its logic. But
responsibility for testing for null argument values lies with the UDF.

Chapter 1. Statements 239

CREATE FUNCTION (OLE DB External Table)

240

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions with no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows
to be returned by the function for optimization purposes. Valid values for
integer range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, DB2 will
assume a finite value as a default- the same value assumed for tables for
which the RUNSTATS utility has not gathered statistics.

Warning: if a function does in fact have infinite cardinality, i.e. it returns a
row every time it is called to do so, never returning the "end-of-table”
condition, then queries which require the "end-of-table” condition to
correctly function will be infinite, and will have to be interrupted.
Examples of such queries are those involving GROUP BY and ORDER BY.
The user is advised to not write such UDFs.

Notes:
* Compatibilities
— For compatibility with previous versions of DB2:
- NOT VARIANT can be specified in place of DETERMINISTIC
- VARIANT can be specified in place of NOT DETERMINISTIC
- NULL CALL can be specified in place of CALLED ON NULL INPUT

- NOT NULL CALL can be specified in place of RETURNS NULL ON
NULL INPUT

* FENCED, FINAL CALL, SCRATCHPAD, PARAMETER STYLE SQL,
DISALLOW PARALLEL, NO DBINFO, NOT THREADSAFE, and NO SQL
are implicit in the statement and can be specified.

* When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values.
For example, a constant which may be used as an input value could have a
built-in data type that is different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the
rules for promotion, it is generally recommended to use the following data
types for parameters:

SQL Reference, Volume 2

CREATE FUNCTION (OLE DB External Table)

— VARCHAR instead of CHAR
— VARGRAPHIC instead of GRAPHIC

* For portability of UDFs across platforms, it is recommended to use the
following data types:

— DOUBLE or REAL instead of FLOAT
— DECIMAL instead of NUMERIC
— CLOB (or BLOB) instead of LONG VARCHAR

* Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

* Privileges

The definer of a function always receives the EXECUTE privilege WITH
GRANT OPTION on the function, as well as the right to drop the function.

Examples:

Example 1: The following registers an OLE DB table function, which retrieves
order information from a Microsoft Access database. The connection string is
defined in the external name.

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER,
customerid CHAR(5),
employeeid INTEGER,
orderdate TIMESTAMP,
requireddate TIMESTAMP,
shippeddate TIMESTAMP,
shipvia INTEGER,
freight dec(19,4))
LANGUAGE OLEDB
EXTERNAL NAME ''orders!Provider=Microsoft.Jet.0OLEDB.3.51;
Data Source=c:\sqllib\samples\oledb\nwind.mdb
!COLLATING_SEQUENCE=Y';

Example 2: The following registers an OLE DB table function, which retrieves
customer information from an Oracle database. The connection string is
provided through a server definition. The table name is fully qualified in the
external name. The local user john is mapped to the remote user dave. Other
users will use the guest user ID in the connection string.
CREATE SERVER spirit
WRAPPER OLEDB
OPTIONS (CONNECTSTRING 'Provider=MSDAORA;Persist Security Info=False;

User ID=guest;password=pwd;Locale Identifier=1033;
OLE DB Services=CLIENTCURSOR;Data Source=spirit');

CREATE USER MAPPING FOR john
SERVER spirit

Chapter 1. Statements 241

CREATE FUNCTION (OLE DB External Table)

OPTIONS (REMOTE_AUTHID 'dave', REMOTE_PASSWORD 'mypwd');

CREATE FUNCTION customers ()

RETURNS TABLE (customer id INTEGER,
name VARCHAR(20),
address VARCHAR(20),
city VARCHAR(20),
state VARCHAR(5),
zip_code INTEGER)

LANGUAGE OLEDB

EXTERNAL NAME 'spirit!demo.customer';

Example 3: The following registers an OLE DB table function, which retrieves
information about stores from a MS SQL Server 7.0 database. The connection
string is provided in the external name. The table function has an input
parameter to pass through command text to the OLE DB provider. The rowset
name does not need to be specified in the external name. The query example
passes in SQL statement text to retrieve the top three stores.

CREATE FUNCTION favorites (varchar(600))

RETURNS TABLE (store_id CHAR (4),
name VARCHAR (41),
sales INTEGER)

SPECIFIC favorites

LANGUAGE OLEDB

EXTERNAL NAME '!!Provider=SQLOLEDB.1;Persist Security Info=False;
User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;
Locale Identifier=1033;Use Procedure for Prepare=1;
Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
OLE DB Services=CLIENTCURSOR;';

SELECT =

FROM TABLE (favorites

(' select top 3 sales.stor_id as store_id, ' ||

' stores.stor_name as name, ' ||

' sum(sales. qty) as sales ' |
from sales, stores '
where sales.stor id = stores.stor id ' ||
group by sales.stor_id, stores.stor_name ' ||
order by sum(sales.qty) desc ')) as f;

Related reference:

* “Basic predicate” in the SQL Reference, Volume 1
['CREATE SERVER” on page 328|

['CREATE USER MAPPING” on page 461|

[‘CREATE WRAPPER” on page 479|

[‘CREATE FUNCTION (External Table)” on page 217

* “Promotion of data types” in the SQL Reference, Volume 1

242 SQL Reference, Volume 2

CREATE FUNCTION (Sourced or Template)

CREATE FUNCTION (Sourced or Template)

This statement is used to:

* Register a user-defined function, based on another existing scalar or column
function, with an application server.

* Register a function template with an application server that is designated as
a federated server. A function template is a partial function that contains no
executable code. The user creates it for the purpose of mapping it to a data
source function. After the mapping is created, the user can specify the
function template in queries submitted to the federated server. When such a
query is processed, the federated server will invoke the data source
function to which the template is mapped, and return values whose data
types correspond to those in the RETURNS portion of the template’s
definition.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

* IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the function does not exist

* CREATEIN privilege on the schema, if the schema name of the function
exists.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

No authority is required on a function referenced in the SOURCE clause.

Syntax:

»»—CREATE FUNCTION—function-name—() —@ >

Yy data- typelj—‘

|—pammeter'-nameJ

Chapter 1. Statements 243

CREATE FUNCTION (Sourced or Template)

244

»—RETURNS—data-type?—@ |_ J @ >
SPECIFIC—specific-name

>

SPECIFIC—specific-name

-function-name—(L)—
Y data-type

|—NOT DETERMINISTIC— —EXTERNAL ACTION——r
®

SOURCE—Efunction-name o <

AS TEMPLATE—@

|—DETERMINISTIC

—NO EXTERNAL ACTION—

Description:

function-name

Names the function or function template being defined. It is a qualified or
unqualified name that designates a function. The unqualified form of
function-name is an SQL identifier (with a maximum length of 18). In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by
a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function or function template described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number and
data types of the parameters, while of course unique within its schema,
need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ‘SYS’
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a function-name (SQLSTATE 42939). The
names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

When naming a user-defined function that is sourced on an existing
function with the purpose of supporting the same function with a
user-defined distinct type, the same name as the sourced function may be
used. This allows users to use the same function with a user-defined
distinct type without realizing that an additional definition was required.
In general, the same name can be used for more than one function if there
is some difference in the signature of the functions.

SQL Reference, Volume 2

CREATE FUNCTION (Sourced or Template)

(data-type,...)
Identifies the number of input parameters of the function or function
template, and specifies the data type of each parameter. One entry in the
list must be specified for each parameter that the function or function
template will expect to receive. No more than 90 parameters are allowed.
If this limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a function or function template that has no
parameters. In this case, the parentheses must still be coded, with no
intervening data types. For example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions or function templates within a
schema are permitted to have exactly the same type for all corresponding
parameters. (This restriction applies also to a function and function
template within a schema that have the same name.) Lengths, precisions
and scales are not considered in this type comparison. Therefore CHAR(8)
and CHAR(35) are considered to be the same type, as are DECIMAL(11,2)
and DECIMAL (4,3). For a Unicode database, CHAR(13) and GRAPHIC(8)
are considered to be the same type. There is some further bundling of
types that causes them to be treated as the same type for this purpose,
such as DECIMAL and NUMERIC. A duplicate signature raises an SQL
error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

the second and fourth statements would fail because they are considered
to be a duplicate functions.

parameter-name
Specifies an optional name for the parameter that is distinct from the
names of all other parameters in this function.

data-typel
Specifies the data type of the parameter.

With a sourced scalar function any valid SQL data type may be used
provided it is castable to the type of the corresponding parameter of
the function identified in the SOURCE clause. A REF(type-name) data
type cannot be specified as the data type of a parameter (SQLSTATE
42997).

Since the function is sourced, it is not necessary (but still permitted) to
specify length, precision, or scale for the parameterized data types.

Chapter 1. Statements 245

CREATE FUNCTION (Sourced or Template)

246

Instead, empty parentheses may be used (for example CHAR() may be
used). A parameterized data type is any one of the data types that can be
defined with a specific length, scale, or precision. The parameterized
data types are the string data types and the decimal data types.

RETURNS

This mandatory clause identifies the output of the function or function
template.

data-type2
Specifies the data type of the output.

Any valid SQL data type is valid, as is a distinct type, provided it is
castable from the result type of the source function.

The parameter of a parameterized type need not be specified, as
above for parameters of a sourced function. Instead, empty
parentheses may be used, for example, VARCHAR().

For additional considerations and rules that apply to the specification
of the data type in the RETURNS clause when the function is sourced
on another, see the “Rules” section of this statement.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

SOURCE

Specifies that the function being created is to be implemented by another
function (the source function) already known to the database manager.
The source function can be either a built-in function (except for
COALESCE, DBPARTITIONNUM, NULLIF, HASHEDVALUE, TYPE_ID,
TYPE_NAME, TYPE_SCHEMA, or VALUE) or a previously created
user-defined scalar function.

SQL Reference, Volume 2

CREATE FUNCTION (Sourced or Template)

The SOURCE clause may be specified only for scalar or column functions;
it may not be specified for table functions.

The SOURCE clause provides the identity of the other function.

function-name
Identifies the particular function that is to be used as the source and is
valid only if there is exactly one specific function in the schema with
this function-name for which the authorization ID of the statement has
EXECUTE privilege. This syntax variant is not valid for a source
function that is a built-in function.

If an unqualified name is provided, then the current SQL path (the
value of the CURRENT PATH special register) is used to locate the
function. The first schema in the function path that has a function
with this name for which the authorization ID of the statement has
EXECUTE privilege is selected.

If no function by this name exists in the named schema or if the name
is not qualified and there is no function with this name in the
function path, an error (SQLSTATE 42704) is raised. If there is more
than one authorized specific instance of the function in the named or
located schema, an error (SQLSTATE 42725) is raised. If a function by
this name exists and the authorization ID of the statement does not
have EXECUTE privilege on this function, an error (SQLSTATE 42501)
is raised.

SPECIFIC specific-name
Identifies the particular user-defined function that is to be used as the
source, by the specific-name either specified or defaulted to at function
creation time. This syntax variant is not valid for a source function
that is a built-in function.

If an unqualified name is provided, then the current SQL path is used
to locate the function. The first schema in the function path that has a
function with this specific name for which the authorization ID of the
statement has EXECUTE privilege is selected.

If no function by this specific-name exists in the named schema or if
the name is not qualified and there is no function with this
specific-name in the SQL path, an error (SQLSTATE 42704) is raised. If
a function by this specific-name exists, and the authorization ID of the
statement does not have EXECUTE privilege on this function, an error
(SQLSTATE 42501) is returned.

function-name (data-type,...)
Provides the function signature, which uniquely identifies the source
function. This is the only valid syntax variant for a source function
that is a built-in function.

Chapter 1. Statements 247

CREATE FUNCTION (Sourced or Template)

248

The rules for function resolution are applied to select one function
from the functions with the same function name, given the data types
specified in the SOURCE clause. However, the data type of each
parameter in the function selected must have the exact same type as
the corresponding data type specified in the source function.

function-name
Gives the function name of the source function. If an unqualified
name is provided, then the schemas of the user’s SQL path are
considered.

data-type
Must match the data type that was specified on the CREATE
FUNCTION statement in the corresponding position (comma
separated).

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match. For example, DECIMALY()
will match a parameter whose data type was defined as
DECIMAL(7,2)).

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE FUNCTION
statement. This can be useful in assuring that the exact intended
function will be used. Also note that synonyms for data types will
be considered a match (for example DEC and NUMERIC will
match).

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

AS TEMPLATE
Indicates that this statement will be used to create a function template, not
a function with executable code.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether
the function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical

SQL Reference, Volume 2

Rules:

CREATE FUNCTION (Sourced or Template)

inputs. Optimizations taking advantage of the fact that identical
inputs always produce the same results are prevented by specifying
NOT DETERMINISTIC.

NOT DETERMINISTIC must be explicitly or implicitly specified if the
body of the function accesses a special register or calls another
non-deterministic function (SQLSTATE 428C2).

NO EXTERNAL ACTION or EXTERNAL ACTION

This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. By specifying NO EXTERNAL ACTION, the system can use
certain optimizations that assume functions have no external impacts.

EXTERNAL ACTION must be explicitly or implicitly specified if the
body of the function calls another function that has an external action
(SQLSTATE 428C2).

* For convenience, in this section we will call the function being created CF
and the function identified in the SOURCE clause SF, no matter which of
the three allowable syntaxes was used to identify SF.

The unqualified name of CF and the unqualified name of SF can be
different.

A function named as the source of another function can, itself, use
another function as its source. Extreme care should be exercised when
exploiting this facility because it could be very difficult to debug an
application if an indirectly invoked function raises an error.

The following clauses are invalid if specified in conjunction with the
SOURCE clause (because CF will inherit these attributes from SF):

- CAST FROM ...,
- EXTERNAL ...,

- LANGUAGE ...,

- PARAMETER STYLE ...,

- DETERMINISTIC / NOT DETERMINISTIC,

- FENCED / NOT FENCED,

- RETURNS NULL ON NULL INPUT / CALLED ON NULL INPUT
- EXTERNAL ACTION / NO EXTERNAL ACTION

- NO SQL / CONTAINS SQL / READS SQL DATA

- SCRATCHPAD / NO SCRATCHPAD

- FINAL CALL / NO FINAL CALL

- RETURNS TABLE (...)

- CARDINALITY ...

Chapter 1. Statements 249

CREATE FUNCTION (Sourced or Template)

250

- ALLOW PARALLEL / DISALLOW PARALLEL
- DBINFO / NO DBINFO

- THREADSAFE / NOT THREADSAFE

- INHERIT SPECIAL REGISTERS

- FEDERATED / NOT FEDERATED

An error (SQLSTATE 42613) will result from violation of these rules.

The number of input parameters in CF must be the same as those in SF;
otherwise an error (SQLSTATE 42624) is raised.

It is not necessary for CF to specify length, precision, or scale for a
parameterized data type in the case of:

— The function’s input parameters,
— Its RETURNS parameter

Instead, empty parentheses may be specified as part of the data type (for
example: VARCHAR()) in order to indicate that the length/precision/scale
will be the same as those of the source function, or determined by the
casting.

However, if length, precision, or scale is specified then the value in CF is
checked against the corresponding value in SF as outlined below for input
parameters and returns value.

The specification of the input parameters of CF are checked against those of
SE. The data type of each parameter of CF must either be the same as or be
castable to the data type of the corresponding parameter of SE. If any
parameter is not the same type or castable, an error (SQLSTATE 42879) is
raised.

Note that this rule provides no guarantee against an error occurring when
CF is used. An argument that matches the data type and length or precision
attributes of a CF parameter may not be assignable if the corresponding SF
parameter has a shorter length or less precision. In general, parameters of
CF should not have length or precision attributes that are greater than the
attributes of the corresponding SF parameters.

The specifications for the RETURNS data type of CF are checked against
that of SE. The final RETURNS data type of SE, after any casting, must
either be the same as or castable to the RETURNS data type of CF.
Otherwise an error (SQLSTATE 42866) is raised.

Note that this rule provides no guarantee against an error occurring when
CF is used. A result value that matches the data type and length or

precision attributes of the SF RETURNS data type may not be assignable if
the CF RETURNS data type has a shorter length or less precision. Caution

SQL Reference, Volume 2

CREATE FUNCTION (Sourced or Template)

should be used when choosing to specify the RETURNS data type of CF as
having length or precision attributes that are less than the attributes of the
SF RETURNS data type.

Notes:

* Determining whether one data type is castable to another data type does
not consider length or precision and scale for parameterized data types
such as CHAR and DECIMAL. Therefore, errors may occur when using a
function as a result of attempting to cast a value of the source data type to
a value of the target data type. For example, VARCHAR is castable to
DATE but if the source type is actually defined as VARCHAR(5), an error
will occur when using the function.

* When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values
(see “Promotion of data types”). For example, a constant which may be
used as an input value could have a built-in data type different from the
one expected and, more significantly, may not be promoted to the data type
expected. Based on the rules for promotion, it is generally recommended to
use the following data types for parameters:

INTEGER instead of SMALLINT
DOUBLE instead of REAL
VARCHAR instead of CHAR
VARGRAPHIC instead of GRAPHIC

* Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

* For a federated server to recognize a data source function, the function
must map to a counterpart at the federated database. If the database
contains no counterpart, the user must create the counterpart and then the
mapping.

The counterpart can be a function (scalar or source) or a function template.
If the user creates a function and the required mapping, then, each time a
query that specifies the function is processed, DB2 (1) compares strategies
for invoking it with strategies for invoking the data source function, and (2)
invokes the function that is expected to require less overhead.

If the user creates a function template and the mapping, then each time a
query that specifies the template is processed, DB2 invokes the data source
function that it maps to, provided that an access plan for invoking this
function exists.

* Privileges

Chapter 1. Statements 251

CREATE FUNCTION (Sourced or Template)

252

The definer of a function always receives the EXECUTE privilege on the
function, as well as the right to drop the function. The definer of the
function is also given the WITH GRANT OPTION if any one of the
following is true:

— The source function is a built-in function.

— The definer of the function has EXECUTE WITH GRANT OPTION on
the source function.

— The function is a template.
Examples:

Example 1: Some time after the creation of Pellow’s original CENTRE external
scalar function, another user wants to create a function based on it, except this
function is intended to accept only integer arguments.

CREATE FUNCTION MYCENTRE (INTEGER, INTEGER)

RETURNS FLOAT
SOURCE PELLOW.CENTRE (INTEGER, FLOAT)

Example 2: A distinct type, HATSIZE, has been created based on the built-in
INTEGER data type. It would be useful to have an AVG function to compute
the average hat size of different departments. This is easily done as follows:

CREATE FUNCTION AVG (HATSIZE) RETURNS HATSIZE
SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function,
allowing the cast from HATSIZE to INTEGER for the argument and from
INTEGER to HATSIZE for the result of the function.

Example 3: In a federated system, a user wants to invoke an Oracle UDF that
returns table statistics in the form of values with double-precision floating
points. The federated server can recognize this function only if there is a
mapping between the function and a federated database counterpart. But no
such counterpart exists. The user decides to provide one in the form of a
function template, and to assign this template to a schema called NOVA. The
user uses the following code to register the template with the federated server.
CREATE FUNCTION NOVA.STATS (DOUBLE, DOUBLE)

RETURNS DOUBLE
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

Example 4: In a federated system, a user wants to invoke an Oracle UDF that
returns the dollar amounts that employees of a particular organization earn as
bonuses. The federated server can recognize this function only if there is a
mapping between the function and a federated database counterpart. No such
counterpart exists; thus, the user creates one in the form of a function
template. The user uses the following code to register this template with the
federated server.

SQL Reference, Volume 2

CREATE FUNCTION (Sourced or Template)

CREATE FUNCTION BONUS ()
RETURNS DECIMAL (8,2)
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

Related reference:

* “Functions” in the SQL Reference, Volume 1

* “Basic predicate” in the SQL Reference, Volume 1

* ["CREATE FUNCTION MAPPING” on page 263|

* “Promotion of data types” in the SQL Reference, Volume 1

* “Casting between data types” in the SQL Reference, Volume 1

Chapter 1. Statements 253

CREATE FUNCTION (SQL Scalar, Table or Row)

CREATE FUNCTION (SQL Scalar, Table or Row)

254

This statement is used to define a user-defined SQL scalar, table or row
function. A scalar function returns a single value each time it is invoked, and is
generally valid wherever an SQL expression is valid. A table function may be
used in a FROM clause and returns a table. A row function may be used as a
transform function and returns a row.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following;:

* SYSADM or DBADM authority

* For each table, view or nickname identified in any fullselect:
— CONTROL privilege on that table, view, or nickname, or
— SELECT privilege on that table, view, or nickname

and at least one of the following:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the view does not exist

— CREATEIN privilege on the schema, if the schema name of the view
refers to an existing schema

Group privileges other than PUBLIC are not considered for any table or view
specified in the CREATE FUNCTION statement.

Authorization requirements of the data source for the table or view referenced
by the nickname are applied when the function is invoked. The authorization
ID of the connection may be mapped to a different remote authorization ID.

If a function definer can only create the function because the definer has
SYSADM authority, the definer is granted implicit DBADM authority for the

purpose of creating the function.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

SQL Reference, Volume 2

CREATE FUNCTION (SQL Scalar, Table or Row)

»»>—CREATE FUNCTION—function-name—() —@
\\' -parame ter-name—data-type]»\J

»—RETURNS ata-typez @ |_ _| @ =
ROW column-Tist ’J SPECIFIC—specific-name
TABLE

>

|—LANGUAGE SQL—I |—NOT DETERMINISTIC— |—EXTERNAL ACTION——

Y

@ @ @ >

DETERMINISTIC |—NO EXTERNAL ACTION-—

READS SQL DATA STATIC DISPATCH CALLED ON NULL INPUT
[RE08 S0 P oL 1 ol N

Y

|—CONTAINS SQL

|—INHERIT SPECIAL REGISTERS—l

. »
NOT FEDERATED—

—@ i: o
FEDERATED:

> o i SQL-function-body '—><

LPREDICATES—(—I predicate-specification '—)

column-list:

3

F—(—"-column-name—data-type3——) |

SQL-function-body:

RETURN Statement i |
dynamic-compound-statement

Notes:
1 Valid only if RETURNS specifies a scalar result (data-type2)
Description:

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier

Chapter 1. Statements 255

CREATE FUNCTION (SQL Scalar, Table or Row)

for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a function-name (SQLSTATE 42939). The
names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the
comparison operators.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

parameter-name
A name that is distinct from the names of all other parameters in this
function.

data-typel
Specifies the data type of the parameter:

* SQL data type specifications and abbreviations that may be specified in
the data-typel definition of a CREATE TABLE statement.

* REF may be specified, but that REF is unscoped. The system does not
attempt to infer the scope of the parameter or result. Inside the body of
the function, a reference type can be used in a dereference operation
only by first casting it to have a scope. Similarly, a reference returned
by an SQL function can be used in a dereference operation only by first
casting it to have a scope.

* LONG VARCHAR and LONG VARGRAPHIC data types may not be
used (SQLSTATE 42815).

RETURNS
This mandatory clause identifies the type of output of the function.

data-type2
Specifies the data type of the output.

256 SQL Reference, Volume 2

CREATE FUNCTION (SQL Scalar, Table or Row)

In this statement, exactly the same considerations apply as for the
parameters of SQL functions described above under data-typel for
function parameters.

ROW column-list
Specifies that the output of the function is a single row. If the function
returns more than one row, an error is raised (SQLSTATE 21505). The
column-list must include at least two columns (SQLSTATE 428F0).

A row function can only be used as a transform function for a
structured type (having one structured type as its parameter and
returning only base types).

TABLE column-list
Specifies that the output of the function is a table.

column-list
The list of column names and data types returned for a ROW or
TABLE function

column-name
Specifies the name of this column. The name cannot be qualified
and the same name cannot be used for more than one column of
the row.

data-type3
Specifies the data type of the column, and can be any data type
supported by a parameter of the SQL function.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another

function instance that exists at the application server; otherwise an error is
raised (SQLSTATE 42710).

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

Chapter 1. Statements 257

CREATE FUNCTION (SQL Scalar, Table or Row)

LANGUAGE SQL
Specifies that the function is written using SQL.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC.

NOT DETERMINISTIC must be explicitly or implicitly specified if the
body of the function accesses a special register or calls another
non-deterministic function (SQLSTATE 428C2).

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. By specifying NO EXTERNAL ACTION, the system can use
certain optimizations that assume functions have no external impacts.

EXTERNAL ACTION must be explicitly or implicitly specified if the body
of the function calls another function that has an external action
(SQLSTATE 428C2).

READS SQL DATA or CONTAINS SQL
Indicates what type of SQL statements can be executed. Because the SQL
statement supported is the RETURN statement, the distinction has to do
with whether or not the expression is a subquery.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data can be
executed by the function (SQLSTATE 42985).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the function (SQLSTATE 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, DB2
chooses a function based on the static types (declared types) of the
parameters of the function.

CALLED ON NULL INPUT
This clause indicates that the function is called regardless of whether any
of its arguments are null. It can return a null value or a non-null value.
Responsibility for testing null argument values lies with the user-defined
function.

258 SQL Reference, Volume 2

CREATE FUNCTION (SQL Scalar, Table or Row)

The phrase NULL CALL may be used in place of CALLED ON NULL
INPUT.

FEDERATED or NOT FEDERATED
This optional clause specifies whether or not federated objects can be
used. If neither option is specified, the body of the function is examined.
If a federated object is referenced in the body of the function, a warning is
returned (SQLSTATE 01639) and the function is created as FEDERATED. If
no federated object is referenced, the function is defined as NOT
FEDERATED.

If FEDERATED is specified, federated objects can be accessed from SQL
statements in the function.

Statements within the function that access federated objects may be
subject to special authorization rules.

If NOT FEDERATED is specified, federated objects cannot be used in any
SQL statement in the function (SQLSTATE 429BA).

INHERIT SPECIAL REGISTERS
This optional clause indicates that updatable special registers in the
function will inherit their initial values from the environment of the
invoking statement. For a function that is invoked in the select-statement
of a cursor, the initial values are inherited from the environment when the
cursor is opened. For a routine that is invoked in a nested object (for
example, a trigger or a view), the initial values are inherited from the
runtime environment (not the object definition).

No changes to the special registers are passed back to the caller of the
function.

Some special registers, such as the datetime special registers, reflect a
property of the statement currently executing, and are therefore never
inherited from the caller.

PREDICATES
For predicates using this function, this clause identifies those that can
exploit the index extensions, and can use the optional SELECTIVITY
clause for the predicate’s search condition. If the PREDICATES clause is
specified, the function must be defined as DETERMINISTIC with NO
EXTERNAL ACTION (SQLSTATE 42613).

predicate-specification
For details on predicate specification, see “CREATE FUNCTION
(External Scalar)”.

SQL-function-body
Specifies the body of the function. Parameter names can be referenced in
the SQL-function-body. Parameter names may be qualified with the
function name to avoid ambiguous references.

Chapter 1. Statements 259

CREATE FUNCTION (SQL Scalar, Table or Row)

260

If the SQL-function-body is a dynamic compound statement, it must
contain at least one RETURN statement, and a RETURN statement must
be executed when the function is called (SQLSTATE 42632). If the function
is a table or row function, it can contain only one RETURN statement,
which must be the last statement in the dynamic compound statement
(SQLSTATE 429BD).

Notes:

Compatibilities

— For compatibility with previous versions of DB2:

- NULL CALL can be specified in place of CALLED ON NULL INPUT
Resolution of function calls inside the function body is done according to
the function path that is effective for the CREATE FUNCTION statement
and does not change after the function is created.

If an SQL function contains multiple references to any of the date or time

special registers, all references return the same value, and it will be the

same value returned by the register invocation in the statement that called
the function.

The body of an SQL function cannot contain a recursive call to itself or to

another function or method that calls it, since such a function could not

exist to be called.

The following rules are enforced by all statements that create functions or

methods:

— A function may not have the same signature as a method (comparing the
first parameter-type of the function with the subject-type of the method).

— A function and a method may not be in an overriding relationship. That
is, if the function were a method with its first parameter as subject, it
must not override, or be overridden by, another method. For more
information about overriding methods, see the “CREATE TYPE
(Structured)” statement.

— Because overriding does not apply to functions, it is permissible for two
functions to exist such that, if they were methods, one would override
the other.

For the purpose of comparing parameter-types in the above rules:

— Parameter-names, lengths, AS LOCATOR, and FOR BIT DATA are
ignored.

— A subtype is considered to be different from its supertype.
Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function
can access a table that is being modified by the statement which invoked
the function (SQLSTATE 57053). For example, suppose the user-defined

SQL Reference, Volume 2

CREATE FUNCTION (SQL Scalar, Table or Row)

function BONUS() is defined as READS SQL DATA. If the statement
UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is
invoked, no SQL statement in the BONUS function can read from the
EMPLOYEE table.

* Privileges
The definer of a function always receives the EXECUTE privilege on the
function, as well as the right to drop the function. The definer of a function
is also given the WITH GRANT OPTION on the function if the definer has
WITH GRANT OPTION on all privileges required to define the function, or
if the definer has SYSADM or DBADM authority.

The definer of a function only acquires privileges if the privileges from
which they are derived exist at the time the function is created. The definer
must have these privileges either directly, or because PUBLIC has the
privileges. Privileges held by groups of which the function definer is a
member are not considered. When using the function, the connected user’s
authorization ID must have the valid privileges on the table or view that
the nickname references at the data source.

Examples:

Example 1: Define a scalar function that returns the tangent of a value using
the existing sine and cosine functions.

CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X)

Example 2: Define a transform function for the structured type PERSON.

CREATE FUNCTION FROMPERSON (P PERSON)
RETURNS ROW (NAME VARCHAR(10), FIRSTNAME VARCHAR(10))
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN VALUES (P..NAME, P..FIRSTNAME)

Example 3: Define a table function that returns the employees in a specified
department number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
RETURNS TABLE (EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))
LANGUAGE SQL

Chapter 1. Statements 261

CREATE FUNCTION (SQL Scalar, Table or Row)

READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN
SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

Example 4: Define a scalar function that reverses a string.

CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))
RETURNS VARCHAR(4000)
DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
BEGIN ATOMIC
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT '';
DECLARE LEN INT;
IF INSTR IS NULL THEN
RETURN NULL;
END IF;
SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN)
= (SUBSTR(RESTSTR, 1, 1) || REVSTR,
SUBSTR(RESTSTR, 2, LEN - 1),
LEN - 1);
END WHILE;
RETURN REVSTR;
END

Related reference:

* “Basic predicate” in the SQL Reference, Volume 1

[‘CREATE TYPE (Structured)” on page 427]

['RETURN statement” on page 794

* ["Compound SQL (Dynamic)” on page 123|

[‘CREATE FUNCTION (External Scalar)” on page 190}

* “SQL statements allowed in routines” in the SQL Reference, Volume 1

* “Special registers” in the SQL Reference, Volume 1

262 SQL Reference, Volume 2

CREATE FUNCTION MAPPING

CREATE FUNCTION MAPPING

The CREATE FUNCTION MAPPING statement is used to:

* Create a mapping between a federated database function or function
template and a data source function. The mapping can associate the
federated database function or template with a function at either (1) a
specified data source or (2) a range of data sources; for example, all data
sources of a particular type and version.

¢ Disable a default mapping between a federated database function and a
data source function.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The authorization ID of the statement must have SYSADM or DBADM
authority.
Syntax:

FOR >

»>—CREATE FUNCTION MAPPING

I—function-mapping-name—l

»——function-name—(>
—|: data type
SPECIFIC—specific-name

SERVER—server-name I >
SERVER TYPE—server-type

|—VERSION—| server-version i |
I—WRAPPER—;«/r‘apper-name—I

|—| function-options 'J |—WITH INFIXJ

Chapter 1. Statements 263

CREATE FUNCTION MAPPING

server-version:

version
[1
L.—releaseﬁ
.—mod-

version-string-constant

function-options:

I_ ADD
|—0PTIONS—(—'|_——|—function—option-name—string-constant) |

Description:

function-mapping-name
Names the function mapping. The name must not identify a function
mapping that is already described in the catalog (SQLSTATE 42710).

If the function-mapping-name is omitted, a system-generated unique name
is assigned.

function-name
Is the qualified or unqualified name of the function or function template
to map from.

data-type
For a function or function template that has any input parameters,
data-type specifies the data type of such a parameter. The data type cannot
be LONG VARCHAR, LONG VARGRAPHIC, DATALINK, a large object
(LOB) type, or a user-defined type.

SPECIFIC specific-name
Identifies the function or function template to map from. Specify
specific-name if the function or function template does not have a unique
function-name in the federated database.

SERVER server-name
Names the data source that contains the function that is being mapped to.

TYPE server-type
Identifies the type of data source that contains the function that is being
mapped to.

VERSION
Identifies the version of the data source denoted by server-type.

version
Specifies the version number. version must be an integer.

264 SQL Reference, Volume 2

CREATE FUNCTION MAPPING

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i"); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3").

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by server-type
and server-version.

OPTIONS
Indicates what function mapping options are to be enabled.

ADD
Enables one or more function mapping options.

function-option-name
Names a function mapping option that applies either to the function
mapping or to the data source function included in the mapping.

string-constant
Specifies the setting for function-option-name as a character string
constant.

WITH INFIX
Specifies that the data source function be generated in infix format.

Notes:

* A federated database function or function template can map to a data
source function if:

— The federated database function or template has the same number of
input parameters as the data source function.

— The data types that are defined for the federated function or template are
compatible with the corresponding data types that are defined for the
data source function.

* If a distributed request references a DB2 function that maps to a data
source function, the optimizer develops strategies for invoking either
function when the request is processed. The DB2 function is invoked if

Chapter 1. Statements 265

CREATE FUNCTION MAPPING

266

doing so requires less overhead than invoking the data source function.
Otherwise, if invoking the DB2 function requires more overhead, then the
data source function is invoked.

* If a distributed request references a DB2 function template that maps to a
data source function, only the data source function can be invoked when
the request is processed. The template cannot be invoked because it has no
executable code.

* Default function mappings can be rendered inoperable by disabling them
(they cannot be dropped). To disable a default function mapping, code the
CREATE FUNCTION MAPPING statement so that it specifies the name of
the DB2 function within the mapping and sets the DISABLE option to “Y’.

* Functions in the SYSIBM schema do not have a specific name. To override
the default function mapping for a function in the SYSIBM schema, specify
function-name with qualifier SYSIBM and function name (such as LENGTH).

* A CREATE FUNCTION MAPPING statement within a given unit of work
(UOW) cannot be processed under either of the following conditions:

— The statement references a single data source, and the UOW already
includes a SELECT statement that references a nickname for a table or
view within this data source.

— The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources.

Examples:

Example 1: Map a function template to a UDF that all Oracle data sources can
access. The template is called STATS and belongs to a schema called NOVA.
The Oracle UDF is called STATISTICS and belongs to a schema called STAR.
CREATE FUNCTION MAPPING MY_ORACLE_FUN1
FOR NOVA.STATS (DOUBLE, DOUBLE)

SERVER TYPE ORACLE
OPTIONS (REMOTE_NAME 'STAR.STATISTICS')

Example 2: Map a function template called BONUS to a UDF, also called
BONUS, that is used at an Oracle data source called ORACLEI].
CREATE FUNCTION MAPPING MY ORACLE_FUN2
FOR BONUS()

SERVER ORACLE1
OPTIONS (REMOTE_NAME 'BONUS')

Example 3: Assume that there is a default function mapping between the
WEEK system function that is defined to the federated database and a similar
function that is defined to Oracle data sources. When a query that requests
Oracle data and that references WEEK is processed, either WEEK or its Oracle

SQL Reference, Volume 2

CREATE FUNCTION MAPPING

counterpart will be invoked, depending on which one is estimated by the
optimizer to require less overhead. The DBA wants to find out how
performance would be affected if only WEEK were invoked for such queries.
To ensure that WEEK is invoked each time, the DBA must disable the
mapping.
CREATE FUNCTION MAPPING
FOR SYSFUN.WEEK(INT)

TYPE ORACLE
OPTIONS (DISABLE 'Y')

Example 4: Map the local function UCASE(CHAR) to a UDF that’s used at an
Oracle data source called ORACLE2. Include the estimated number of
instructions per invocation of the Oracle UDF.
CREATE FUNCTION MAPPING MY_ORACLE_FUN4
FOR SYSFUN.UCASE(CHAR)
SERVER ORACLE2
OPTIONS

(REMOTE_NAME 'UPPERCASE',
INSTS_PER_INVOC '1000')

Related reference:

* “Function mapping options for federated systems” in the Federated Systems
Guide

Chapter 1. Statements 267

CREATE INDEX

CREATE INDEX

The CREATE INDEX statement is used to:
¢ Create an index on a DB2 table

* Create an index specification, metadata that indicates to the optimizer that a
data source table has an index.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority.

* One of:
— CONTROL privilege on the table
— INDEX privilege on the table

and one of:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the index does not exist

— CREATEIN privilege on the schema, if the schema name of the index
refers to an existing schema.

No explicit privilege is required to create an index on a declared temporary
table.

Syntax:

»»—CREAT E—L—_I—I NDEX—index-name
UNIQUE

l—ASC—l

»—ON table-name (—column name) >
(2) I—DESC—I I—SPECIFICATION ONLY—I

nickname

268 SQL Reference, Volume 2

@
(3) |
INCLUDE (—X—column-name)

CREATE INDEX

PCTFREE 10 DISALLOW REVERSE SCANS
[1 []

@ >

tCLUSTEP
EXTEND USING—index-extension-name:

I
|
L(y constant-expressionj—)J

> @ @
I—PCTFREE—int‘egerJ I—MINPCTUSED—irlifeger—I |—ALLOW REVERSE SCANSJ

I—COLLECT STATISTICS—I

I-L—J—DETAI LED—I
SAMPLED

Notes:

1

In a federated system, the table-name must identify a table in the
federated database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement creates an index
specification. INCLUDE, CLUSTER, PCTFREE, MINPCTUSED,
DISALLOW REVERSE SCANS, ALLOW REVERSE SCANS,
and COLLECT STATISTICS cannot be specified.

3 The INCLUDE clause may only be specified if UNIQUE is specified.

Description:

UNIQUE

If ON table-name is specified, UNIQUE prevents the table from containing
two or more rows with the same value of the index key. The uniqueness
is enforced at the end of the SQL statement that updates rows or inserts
new rows.

The uniqueness is also checked during the execution of the CREATE
INDEX statement. If the table already contains rows with duplicate key
values, the index is not created.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that may contain null values, that
column may contain no more than one null value.

Chapter 1. Statements 269

CREATE INDEX

If the UNIQUE option is specified, and the table has a partitioning key,
the columns in the index key must be a superset of the partitioning key.
That is, the columns specified for a unique index key must include all the
columns of the partitioning key (SQLSTATE 42997).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE
429BE).

If ON nickname is specified, UNIQUE should be specified only if the data
for the index key contains unique values for every row of the data source
table. The uniqueness will not be checked.

INDEX index-name

Names the index or index specification. The name, including the implicit
or explicit qualifier, must not identify an index or index specification that
is described in the catalog, or an existing index on a declared temporary
table (SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT,
SYSFUN, or SYSSTAT (SQLSTATE 42939).

The implicit or explicit qualifier for indexes on declared global temporary
tables must be SESSION (SQLSTATE 428EK).

ON table-name or nickname

The table-name identifies a table on which an index is to be created. The
table must be a base table (not a view), a materialized query table
described in the catalog, or a declared temporary table. The name of a
declared temporary table must be qualified with SESSION. The table-name
must not identify a catalog table (SQLSTATE 42832). If UNIQUE is
specified and table-name is a typed table, it must not be a subtable
(SQLSTATE 429B3). If UNIQUE is specified, the table-name cannot be a
materialized query table (SQLSTATE 42809).

nickname is the nickname on which an index specification is to be created.
The nickname references either a data source table whose index is
described by the index specification, or a data source view that is based
on such a table. The nickname must be listed in the catalog.

column-name

For an index, column-name identifies a column that is to be part of the
index key. For an index specification, column-name is the name by which
the federated server references a column of a data source table.

Each column-name must be an unqualified name that identifies a column
of the table. Up to 16 columns can be specified. If table-name is a typed
table, up to 15 columns can be specified. If table-name is a subtable, at least
one column-name must be introduced in the subtable; that is, not inherited
from a supertable (SQLSTATE 428DS). No column-name can be repeated
(SQLSTATE 42711).

270 SQL Reference, Volume 2

CREATE INDEX

The sum of the stored lengths of the specified columns must not be
greater than 1024. If table-name is a typed table, the index key length limit
is further reduced by 4 bytes.

Note that this length can be reduced by system overhead, which varies
according to the data type of the column and whether it is nullable. For
more information on overhead affecting this limit, see “Bytes Counts” in
“CREATE TABLE”.

No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index, even if the length
attribute of the column is small enough to fit within the 1024-byte limit
(SQLSTATE 54008). A structured type column can only be specified if the
EXTEND USING clause is also specified (SQLSTATE 42962). If the
EXTEND USING clause is specified, only one column can be specified,
and the type of the column must be a structured type or a distinct type
that is not based on a LOB, DATALINK, LONG VARCHAR, or LONG
VARGRAPHIC (SQLSTATE 42997).

ASC
Specifies that index entries are to be kept in ascending order of the
column values; this is the default setting. ASC cannot be specified for
indexes that are defined with EXTEND USING (SQLSTATE 42601).

DESC
Specifies that index entries are to be kept in descending order of the
column values. DESC cannot be specified for indexes that are defined
with EXTEND USING (SQLSTATE 42601).

SPECIFICATION ONLY
Indicates that this statement will be used to create an index specification
that applies to the data source table referenced by nickname.
SPECIFICATION ONLY must be specified if nickname is specified
(SQLSTATE 42601). It cannot be specified if table-name is specified
(SQLSTATE 42601).

This clause cannot be used when creating an index on a declared
temporary table (SQLSTATE 42995).

INCLUDE
This keyword introduces a clause that specifies additional columns to be
appended to the set of index key columns. Any columns included with
this clause are not used to enforce uniqueness. These included columns
may improve the performance of some queries through index only access.
The columns must be distinct from the columns used to enforce
uniqueness (SQLSTATE 42711). The limits for the number of columns and
sum of the length attributes apply to all of the columns in the unique key
and in the index.

Chapter 1. Statements 271

CREATE INDEX

This clause cannot be used with declared temporary tables (SQLSTATE
42995).

column-name
Identifies a column that is included in the index but not part of the
unique index key. The same rules apply as defined for columns of the
unique index key. The keywords ASC or DESC may be specified
following the column-name but have no effect on the order.

INCLUDE cannot be specified for indexes that are defined with EXTEND
USING, or if nickname is specified (SQLSTATE 42601).

CLUSTER

Specifies that the index is the clustering index of the table. The cluster
factor of a clustering index is maintained or improved dynamically as
data is inserted into the associated table, by attempting to insert new rows
physically close to the rows for which the key values of this index are in
the same range. Only one clustering index may exist for a table so
CLUSTER may not be specified if it was used in the definition of any
existing index on the table (SQLSTATE 55012). A clustering index may not
be created on a table that is defined to use append mode (SQLSTATE
428D8).

CLUSTER is disallowed if nickname is specified (SQLSTATE 42601). This
clause cannot be used with declared temporary tables (SQLSTATE 42995).

EXTEND USING index-extension-name

Names the index-extension used to manage this index. If this clause is
specified, then there must be only one column-name specified and that
column must be a structured type or a distinct type (SQLSTATE 42997).
The index-extension-name must name an index extension described in the
catalog (SQLSTATE 42704). For a distinct type, the column must exactly
match the type of the corresponding source key parameter in the index
extension. For a structured type column, the type of the corresponding
source key parameter must be the same type or a supertype of the column
type (SQLSTATE 428EO0).

This clause cannot be used with declared temporary tables (SQLSTATE
42995).

constant-expression
Identifies values for any required arguments for the index extension.
Each expression must be a constant value with a data type that
exactly matches the defined data type of the corresponding index
extension parameters, including length or precision, and scale
(SQLSTATE 428EQ).

PCTFREE integer

Specifies what percentage of each index page to leave as free space when

272 SQL Reference, Volume 2

CREATE INDEX

building the index. The first entry in a page is added without restriction.
When additional entries are placed in an index page at least integer
percent of free space is left on each page. The value of integer can range
from 0 to 99. However, if a value greater than 10 is specified, only 10
percent free space will be left in non-leaf pages. The default is 10.

PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This
clause cannot be used with declared temporary tables (SQLSTATE 42995).

MINPCTUSED integer
Indicates whether index leaf pages are merged online, and the threshold
for the minimum percentage of space used on an index leaf page. If, after
a key is removed from an index leaf page, the percentage of space used
on the page is at or below integer percent, an attempt is made to merge
the remaining keys on this page with those of a neighboring page. If there
is sufficient space on one of these pages, the merge is performed and one
of the pages is deleted. The value of integer can be from 0 to 99. However,
a value of 50 or below is recommended for performance reasons.
Specifying this option will have an impact on update and delete
performance. For type 2 indexes, merging is only done during update and
delete operations when there is an exclusive table lock. If an exclusive
table lock does not exist, keys are marked as pseudo deleted during
update and delete operations, and no merging is done. Consider using the
CLEANUP ONLY ALL option of REORG INDEXES to merge leaf pages
instead of using the MINPCTUSED option of CREATE INDEX.

MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601).
This clause cannot be used with declared temporary tables (SQLSTATE
42995).

DISALLOW REVERSE SCANS
Specifies that an index only supports forward scans or scanning of the
index in the order defined at INDEX CREATE time. This is the default.

DISALLOW REVERSE SCANS is disallowed if nickname is specified
(SQLSTATE 42601).

ALLOW REVERSE SCANS
Specifies that an index can support both forward and reverse scans; that
is, in the order defined at INDEX CREATE time and in the opposite (or
reverse) order.

ALLOW REVERSE SCANS is disallowed if nickname is specified
(SQLSTATE 42601).

COLLECT STATISTICS
Specifies that basic index statistics are to be collected during index
creation.

Chapter 1. Statements 273

CREATE INDEX

DETAILED
Specifies that extended index statistics (CLUSTERFACTOR and
PAGE_FETCH_PAIRS) are also to be collected during index creation.

SAMPLED
Specifies that sampling can be used when compiling extended index
statistics.
Rules:

* The CREATE INDEX statement will fail (SQLSTATE 01550) if attempting to
create an index that matches an existing index. Two index descriptions are
considered duplicates if:

— the set of columns (both key and include columns) and their order in the
index is the same as that of an existing index AND

— the ordering attributes are the same AND

— both the previously existing index and the one being created are
non-unique OR the previously existing index is unique AND

— if both the previously existing index and the one being created are
unique, the key columns of the index being created are the same or a
superset of key columns of the previously existing index.

Notes:
* Compatibilities
— For compatibility with DB2 for OS/390:
- The following syntax is tolerated and ignored:
* CLOSE
* DEFINE
* FREEPAGE
* gbpcache-block
* PIECESIZE
* TYPE 2
* using-block
- The following syntax is accepted as the default behavior:
+ COPY NO
* DEFER NO

* Concurrent read/write access to the table is permitted while an index is
being created. Once the index has been built, changes that were made to
the table during index creation time are forward-fitted to the new index.
Write access to the table is then briefly blocked while index creation
completes, after which the new index becomes available.

274 SQL Reference, Volume 2

CREATE INDEX

To circumvent this default behavior, use the LOCK TABLE statement to
explicitly lock the table before issuing a CREATE INDEX statement. (The
table can be locked in either SHARE or EXCLUSIVE mode, depending on
whether read access is to be allowed.)

¢ If the named table already contains data, CREATE INDEX creates the index
entries for it. If the table does not yet contain data, CREATE INDEX creates
a description of the index; the index entries are created when data is
inserted into the table.

* Once the index is created and data is loaded into the table, it is advisable to
issue the RUNSTATS command. The RUNSTATS command updates
statistics collected on the database tables, columns, and indexes. These
statistics are used to determine the optimal access path to the tables. By
issuing the RUNSTATS command, the database manager can determine the
characteristics of the new index. If data has been loaded before the CREATE
INDEX statement is issued, it is recommended that the COLLECT
STATISTICS option on the CREATE INDEX statement be used as an
alternative to the RUNSTATS command.

* Creating an index with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

* The optimizer can recommend indexes prior to creating the actual index.

¢ If an index specification is being defined for a data source table that has an
index, the name of the index specification does not have to match the name
of the index.

* The optimizer uses index specifications to improve access to the data source
tables that the specifications apply to.

¢ The COLLECT STATISTICS options are not supported with declared
temporary tables (SQLSTATE 42995).

¢ The COLLECT STATISTICS options are not supported if a nickname is
specified (SQLSTATE 42601).

Examples:

Example 1: Create an index named UNIQUE_NAM on the PROJECT table.
The purpose of the index is to ensure that there are not two entries in the
table with the same value for project name (PROJNAME). The index entries
are to be in ascending order.

CREATE UNIQUE INDEX UNIQUE_NAM
ON PROJECT (PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.

Arrange the index entries in ascending order by job title (JOB) within each
department (WORKDEPT).

Chapter 1. Statements 275

CREATE INDEX

276

CREATE INDEX JOB_BY_DPT
ON EMPLOYEE (WORKDEPT, JOB)

Example 3: The nickname EMPLOYEE references a data source table called
CURRENT_EMP. After this nickname was created, an index was defined on
CURRENT_EMP. The columns chosen for the index key were WORKDEBT
and JOB. Create an index specification that describes this index. Through this
specification, the optimizer will know that the index exists and what its key
is. With this information, the optimizer can improve its strategy to access the
table.

CREATE UNIQUE INDEX JOB_BY_DEPT
ON EMPLOYEE (WORKDEPT, JOB)
SPECIFICATION ONLY

Example 4: Create an extended index type named SPATIAL_INDEX on a
structured type column location. The description in index extension
GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given
to GRID_EXTENSION to create the index grid size.

CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)
EXTEND USING (GRID_EXTENSION (x'000100100010001000400010'))

Example 5: Create an index named IDX1 on a table named TAB1, and collect
basic index statistics on index IDX1.

CREATE INDEX IDX1 ON TAB1 (coll) COLLECT STATISTICS

Example 6: Create an index named IDX2 on a table named TABI, and collect
detailed index statistics on index IDX2.

CREATE INDEX IDX2 ON TABl (col2) COLLECT DETAILED STATISTICS

Example 7: Create an index named IDX3 on a table named TAB1, and collect
detailed index statistics on index IDX3 using sampling.

CREATE INDEX IDX3 ON TABl (col3) COLLECT SAMPLED DETAILED STATISTICS

Related concepts:
* “Index specifications” in the Federated Systems Guide

Related reference:

* ['CREATE TABLE” on page 332|

* “Interaction of triggers and constraints” in the SQL Reference, Volume 1
* ["CREATE INDEX EXTENSION” on page 277

Related samples:
» “dbstat.sqb -- Reorganize table and run statistics (MF COBOL)”
* “TbGenColjava -- How to use generated columns (JDBC)”

SQL Reference, Volume 2

CREATE INDEX EXTENSION

CREATE INDEX EXTENSION

The CREATE INDEX EXTENSION statement creates an extension object for
use with indexes on tables that have structured type or distinct type columns.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ IMPLICIT_SCHEMA authority on the database (if the schema name of the
index extension does not refer to an existing schema)

* CREATEIN privilege on the schema (if the schema name of the index
extension refers to an existing schema)

Syntax:

»>—CREATE INDEX EXTENSION—index-extension-name >
L(—'parameifer—namel—dai.‘a-typelj—)J

>—| index-maintenance '—I index-search i ><

index-maintenance:

|—FROM SOURCE KEY—(—parameter-name2—data-type2—) >

»—GENERATE KEY USING—table-function-invocation I

index-search:

F—WITH TARGET KEY—(— parameter—name3—data—type3J—) >

Chapter 1. Statements 277

CREATE INDEX EXTENSION

B

»—SEARCH METHODS—'I search-method-definition i |

search-method-definition:

I—NHEN—method—name—(Y _parameter-name4—data-typed) >

»—RANGE THROUGH—range-producing-function-invocation >

> 1
|—FI LTER USING—[index—fi ltering-function- invocation~|—|

case-expression

Description:

index-extension-name
Names the index extension. The name, including the implicit or explicit
qualifier, must not identify an index extension described in the catalog. If
a two-part index-extension-name is specified, the schema name cannot begin
with "SYS”; otherwise, an error (SQLSTATE 42939) is returned.

parameter-namel
Identifies a parameter that is passed to the index extension at
CREATE INDEX time to define the actual behavior of this index
extension. The parameter that is passed to the index extension is
called an instance parameter, because that value defines a new instance
of an index extension.

parameter-namel must be unique within the definition of the index
extension. No more than 90 parameters are allowed. If this limit is
exceeded, an error (SQLSTATE 54023) is returned.

data-typel
Specifies the data type of each parameter. One entry in the list must
be specified for each parameter that the index extension will expect to
receive. The only SQL data types that may be specified are those that
can be used as constants, such as VARCHAR, INTEGER, DECIMAL,
DOUBLE, or VARGRAPHIC (SQLSTATE 429B5). The parameter value
that is received by the index extension at CREATE INDEX must match
data-typel exactly, including length, precision and scale (SQLSTATE
428EQ).

index-maintenance
Specifies how the index keys of a structured or distinct type column are

278 SQL Reference, Volume 2

CREATE INDEX EXTENSION

maintained. Index maintenance is the process of transforming the source
column to a target key. The transformation process is defined using a
table function that has previously been defined in the database.

FROM SOURCE KEY (parameter-name2 data-type2)
Specifies a structured data type or distinct type for the source key
column that is supported by this index extension.

parameter-name2
Identifies the parameter that is associated with the source key
column. A source key column is the index key column (defined in
the CREATE INDEX statement) with the same data type as
data-type2.

data-type2
Specifies the data type for parameter-name2. data-type2 must be a
user-defined structured type or a distinct type that is not sourced
on LOB, DATALINK, LONG VARCHAR, or LONG
VARGRAPHIC (SQLSTATE 42997). When the index extension is
associated with the index at CREATE INDEX time, the data type
of the index key column must:

* exactly match data-type2 if it is a distinct type; or
* be the same type or a subtype of data-type? if it is a structured
type

Otherwise, an error is returned (SQLSTATE 428E0).

GENERATE KEY USING table-function-invocation
Specifies how the index key is generated using a user-defined table
function. Multiple index entries may be generated for a single source
key data value. An index entry cannot be duplicated from a single
source key data value (SQLSTATE 22526). The function can use
parameter-namel, parameter-name2, or a constant as arguments. If the
data type of parameter-name2 is a structured data type, only the
observer methods of that structured type can be used in its arguments
(SQLSTATE 428E3). The output of the GENERATE KEY function must
be specified in the TARGET KEY specification. The output of the
function can also be used as input for the index filtering function
specified on the FILTER USING clause.

The function used in table-function-invocation must:
* Resolve to a table function (SQLSTATE 428E4)
* Not be defined with LANGUAGE SQL (SQLSTATE 428E4)

* Not be defined with NOT DETERMINISTIC (SQLSTATE 428E4) or
EXTERNAL ACTION (SQLSTATE 428E4)

* Be defined with NO SQL (SQLSTATE 428E4)

Chapter 1. Statements 279

CREATE INDEX EXTENSION

280

* Not have a structured data type, LOB, DATALINK, LONG
VARCHAR, or LONG VARGRAPHIC (SQLSTATE 428E3) in the
data type of the parameters, with the exception of system generated
observer methods.

* Not include a subquery (SQLSTATE 428E3).

¢ Return columns with data types that follow the restrictions for data
types of columns of an index defined without the EXTEND USING
clause.

If an argument invokes another operation or routine, it must be an
observer method (SQLSTATE 428E3).

The definer of the index extension must have EXECUTE privilege on
this function.

index-search

Specifies how searching is performed by providing a mapping of the
search arguments to search ranges.

WITH TARGET KEY
Specifies the target key parameters that are the output of the key
generation function specified on the GENERATE KEY USING clause.

parameter-name3
Identifies the parameter associated with a given target key.
parameter-name3 corresponds to the columns of the RETURNS table as
specified in the table function of the GENERATE KEY USING clause.
The number of parameters specified must match the number of
columns returned by that table function (SQLSTATE 428E2).

data-type3
Specifies the data type for each corresponding parameter-name3.
data-type3 must exactly match the data type of each corresponding
output column of the RETURNS table, as specified in the table
function of the GENERATE KEY USING clause (SQLSTATE 428E2),
including the length, precision, and type.

SEARCH METHODS
Introduces the search methods that are defined for the index.

search-method-definition

Specifies the method details of the index search. It consists of a method
name, the search arguments, a range producing function, and an optional
index filter function.

WHEN method-name
The name of a search method. This is an SQL identifier that relates to
the method name specified in the index exploitation rule (found in the

SQL Reference, Volume 2

CREATE INDEX EXTENSION

PREDICATES clause of a user-defined function). A search-method-name
can be referenced by only one WHEN clause in the search method
definition (SQLSTATE 42713).

parameter-name4
Identifies the parameter of a search argument. These names are for
use in the RANGE THROUGH and FILTER USING clauses.

data-type4
The data type associated with a search parameter.

RANGE THROUGH range-producing-function-invocation
Specifies an external table function that produces search ranges. This
function uses parameter-namel, parameter-name4, or a constant as
arguments and returns a set of search ranges.

The table function used in range-producing-function-invocation must:
* Resolve to a table function (SQLSTATE 428E4)

* Not include a subquery (SQLSTATE 428E3) or SQL function
(SQLSTATE 428E4) in its arguments

* Not be defined with LANGUAGE SQL (SQLSTATE 428E4)

* Not be defined with NOT DETERMINISTIC or EXTERNAL
ACTION (SQLSTATE 428E4)

* Be defined with NO SQL (SQLSTATE 428E4)

* The number and types of this function’s results must relate to the
results of the table function specified in the GENERATE KEY
USING clause as follows (SQLSTATE 428E1):

— Return up to twice as many columns as returned by the key
transformation function

— Have an even number of columns, in which the first half of the
return columns define the start of the range (start key values),
and the second half of the return columns define the end of the
range (stop key values)

— Have each start key column with the same type as the
corresponding stop key column

— Have the type of each start key column the same as the
corresponding key transformation function column.

More precisely, let a;:ty, ..., a,:t, be the function result columns and
data types of the key transformation function. The function result
columns of the range-producing-function-invocation must be b:t;, ...,
bty Ciity, oy City, Where m <= n and the "b" columns are the start
key columns and the "c" columns are the stop key columns.

Chapter 1. Statements 281

CREATE INDEX EXTENSION

When the range-producing-function-invocation returns a null value as the
start or stop key value, the semantics are undefined.

The definer of the index extension must have EXECUTE privilege on
this function.

FILTER USING
Allows specification of an external function or a case expression to be
used for filtering index entries that were returned after applying the
range-producing function.

index-filtering-function-invocation
Specifies an external function to be used for filtering index entries.
This function uses the parameter-namel, parameter-name3,
parameter-name4, or a constant as arguments (SQLSTATE 42703) and
returns an integer (SQLSTATE 428E4). If the value returned is 1, the
row corresponding to the index entry is retrieved from the table.
Otherwise, the index entry is not considered for further processing.

If not specified, index filtering is not performed.

The function used in the index-filtering-function-invocation must:
* Not be defined with LANGUAGE SQL (SQLSTATE 429B4)

« Not be defined with NOT DETERMINISTIC or EXTERNAL
ACTION (SQLSTATE 42845)

* Be defined with NO SQL (SQLSTATE 428E4)

* Not have a structured data type in the data type of any of the
parameters (SQLSTATE 428E3).

* Not include a subquery (SQLSTATE 428E3)

If an argument invokes another function or method, these four rules
are also enforced for this nested function or method. However, system
generated observer methods are allowed as arguments to the filter
function (or any function or method used as an argument), as long as
the argument results in a built-in data type.

The definer of the index extension must have EXECUTE privilege on
this function.

case-expression
Specifies a case expression for filtering index entries. Either
parameter-namel, parameter-name3, parameter-name4, or a constant
(SQLSTATE 42703) can be used in the searched-when-clause and
simple-when-clause. An external function with the rules specified in
FILTER USING index-filtering-function-invocation may be used in
result-expression. Any function referenced in the case-expression must
also conform to the four rules listed under index-filtering-function-
invocation. In addition, subqueries cannot be used anywhere else in

282 SQL Reference, Volume 2

CREATE INDEX EXTENSION

the case-expression (SQLSTATE 428E4). The case expression must return
an integer (SQLSTATE 428E4). A return value of 1 in the
result-expression means the index entry is kept, otherwise the index
entry is discarded.

Notes:

¢ Creating an index extension with a schema name that does not already exist
will result in the implicit creation of that schema, provided the
authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is
granted to PUBLIC.

Examples:

Example 1: The following creates an index extension called grid_extension that
uses a structured type SHAPE column in a table function called gridEntry to
generate seven index target keys. This index extension also provides two
index search methods to produce search ranges when given a search
argument.

CREATE INDEX EXTENSION GRID EXTENSION (LEVELS VARCHAR(20) FOR BIT DATA)
FROM SOURCE KEY (SHAPECOL SHAPE)
GENERATE KEY USING GRIDENTRY (SHAPECOL..MBR..XMIN,
SHAPECOL. .MBR. . YMIN,
SHAPECOL. .MBR. . XMAX,
SHAPECOL. .MBR. . YMAX,
LEVELS)
WITH TARGET KEY (LEVEL INT, GX INT, GY INT,
XMIN INT, YMIN INT, XMAX INT, YMAX INT)
SEARCH METHODS
WHEN SEARCHFIRSTBYSECOND (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE (SEARCHARG..MBR..XMIN,
SEARCHARG. .MBR. . YMIN,
SEARCHARG. .MBR. . XMAX,
SEARCHARG. .MBR. . YMAX,
LEVELS)
FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR
SEARCHARG. .MBR..YMAX < YMIN) THEN 0
ELSE CHECKDUPLICATE(LEVEL, GX, GY,
XMIN, YMIN, XMAX, YMAX,
SEARCHARG. .MBR. . XMIN,
SEARCHARG. .MBR. . YMIN,
SEARCHARG. .MBR. . XMAX,
SEARCHARG. .MBR. . YMAX,
LEVELS)
END
WHEN SEARCHSECONDBYFIRST (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE (SEARCHARG..MBR..XMIN,
SEARCHARG. .MBR. . YMIN,
SEARCHARG. .MBR. . XMAX,
SEARCHARG. .MBR. . YMAX,

Chapter 1. Statements 283

CREATE INDEX EXTENSION

LEVELS)
FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR
SEARCHARG. .MBR..YMAX < YMIN) THEN 0

ELSE MBROVERLAP(XMIN, YMIN, XMAX, YMAX,
SEARCHARG. .MBR. .XMIN,
SEARCHARG. .MBR. . YMIN,
SEARCHARG. .MBR. . XMAX,
SEARCHARG. . MBR. . YMAX)

END

Related reference:
* “Constants” in the SQL Reference, Volume 1

284 SQL Reference, Volume 2

CREATE METHOD

CREATE METHOD

This statement is used to associate a method body with a method specification
that is already part of the definition of a user-defined structured type.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ CREATEIN privilege on the schema of the structured type referred to in the
CREATE METHOD statement

* The DEFINER of the structured type referred to in the CREATE METHOD
statement.

To associate an external method body with its method specification, the
authorization ID of the statement must also include at least one of the
following:

* SYSADM or DBADM authority
¢ CREATE_EXTERNAL_ROUTINE authority on the database.

When creating an SQL method, the privileges held by the authorization 1D of
the statement must also include, for each table, view, or nickname identified
in any fullselect:

¢ CONTROL privilege on that table, view, or nickname, or

¢ SELECT privilege on that table, view, or nickname

and at least one of the following:

+ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the view does not exist

* CREATEIN privilege on the schema, if the schema name of the view refers
to an existing schema.

If the definer of an SQL method can only create the method because the

definer has SYSADM authority, the definer is granted implicit DBADM
authority for the purpose of creating the method.

Chapter 1. Statements 285

CREATE METHOD

286

Group privileges other than PUBLIC are not considered for any table or view
specified in the CREATE METHOD statement.

Authorization requirements of the data source for the table or view referenced
by the nickname are applied when the method is invoked. The authorization
ID of the connection may be mapped to a different remote authorization ID.

If the authorization ID has insufficient authority to perform the operation, an
error is raised (SQLSTATE 42502).

Syntax:
»>—CREATE: METHOD: ethod-name FOR—type-name >
method- s1gnature
SPECIFIC METHOD—specific-name
> EXTERNAL o ><

@
I—NAME—E’string’ j—‘ |—TRANSFORM G.ROUP—group—nameJ
er

identifi

SQL-method-body i

method-signature:
|—method-name—() >

-

v

data-typel

l—parameter—name—l |—AS LOCATOR—|

|—RETURNS ata-typeZ
|—AS LOCATOR—|

ata-type3—CAST FROM—data-type4

I—AS LOCATORJ

SQL-method-body:

RETURN Statement i |
dynamic-compound-statement

Description:

METHOD
Identifies an existing method specification that is associated with a
user-defined structured type. The method-specification can be identified
through one of the following means:

method-name
Names the method specification for which a method body is being
defined. The implicit schema is the schema of the subject type

SQL Reference, Volume 2

CREATE METHOD

(type-name). There must be only one method specification for type-name
that has this method-name (SQLSTATE 42725).

method-signature
Provides the method signature which uniquely identifies the method
to be defined. The method signature must match the method
specification that was provided on the CREATE TYPE or ALTER TYPE
statement (SQLSTATE 42883).

method-name
Names the method specification for which a method body is being
defined. The implicit schema is the schema of the subject type
(type-name).

parameter-name
Identifies the parameter name. If parameter names are
provided in the method signature, they must be exactly the
same as the corresponding parts of the matching method
specification. Parameter names are supported in this statement
solely for documentation purposes.

data-typel
Specifies the data type of each parameter.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added.

RETURNS
This clause identifies the output of the method. If a RETURNS
clause is provided in the method signature, it must be exactly the
same as the corresponding part of the matching method
specification on CREATE TYPE. The RETURNS clause is
supported in this statement solely for documentation purposes.

data-type2
Specifies the data type of the output.

AS LOCATOR
For LOB types or distinct types which are based on LOB
types, the AS LOCATOR clause can be added. This
indicates that a LOB locator is to be returned by the
method instead of the actual value.

data-type3 CAST FROM data-type4
This form of the RETURNS clause is used to return a different
data type to the invoking statement from the data type that
was returned by the function code.

AS LOCATOR
For LOB types or distinct types which are based on LOB

Chapter 1. Statements 287

CREATE METHOD

288

types, the AS LOCATOR clause can be used to indicate
that a LOB locator is to be returned from the method
instead of the actual value.

FOR type-name
Names the type for which the specified method is to be associated.
The name must identify a type already described in the catalog.
(SQLSTATE 42704) In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies the particular method, using the specific name either specified
or defaulted to at CREATE TYPE time. The specific-name must identify a
method specification in the named or implicit schema; otherwise, an error
is raised (SQLSTATE 42704).

EXTERNAL

This clause indicates that the CREATE METHOD statement is being used
to register a method, based on code written in an external programming
language, and adhering to the documented linkage conventions and
interface. The matching method-specification in CREATE TYPE must
specify a LANGUAGE other than SQL. When the method is invoked, the
subject of the method is passed to the implementation as an implicit first
parameter.

If the NAME clause is not specified, "NAME method-name"” is assumed.

NAME
This clause identifies the name of the user-written code which
implements the method being defined.

‘string”
The ’string” option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified. For more information on the specific
language conventions, see “CREATE FUNCTION (External
Scalar)”.

identifier
This identifier specified is an SQL identifier. The SQL identifier is
used as the library-id in the string. Unless it is a delimited
identifier, the identifier is folded to upper case. If the identifier is
qualified with a schema name, the schema name portion is
ignored. This form of NAME can only be used with LANGUAGE
C (as defined in the method-specification on CREATE TYPE).

SQL Reference, Volume 2

CREATE METHOD

TRANSFORM GROUP group-name
Indicates the transform group that is used for user-defined structured type
transformations when invoking the method. A transform is required since
the method definition includes a user-defined structured type.

It is strongly recommended that a transform group name be specified; if
this clause is not specified, the default group-name used is
DB2_FUNCTION. If the specified (or default) group-name is not defined
for a referenced structured type, an error results (SQLSTATE 42741).
Likewise, if a required FROM SQL or TO SQL transform function is not
defined for the given group-name and structured type, an error results
(SQLSTATE 42744).

SQL-method-body
The SQL-method-body defines how the method is implemented if the
method specification in CREATE TYPE is LANGUAGE SQL.

The SQL-method-body must comply with the following parts of method
specification:

* DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)

* EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE 428C2)
* CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

* FEDERATED or NOT FEDERATED (SQLSTATE 429BA)

Parameter names can be referenced in the SQL-method-body. The subject
of the method is passed to the method implementation as an implicit first
parameter named SELF.

For additional details, see “Compound SQL (Dynamic)” and “RETURN
Statement”.

Rules:

* The method specification must be previously defined using the CREATE
TYPE or ALTER TYPE statement before CREATE METHOD can be used
(SQLSTATE 42723).

¢ If the method being created is an overriding method, those packages that
are dependent on the following methods are invalidated:

— The original method

— Other overriding methods that have as their subject a supertype of the
method being created

Notes:

* Privileges
The definer of a method always receives the EXECUTE privilege on the
method, as well as the right to drop the method.

Chapter 1. Statements 289

CREATE METHOD

290

If an EXTERNAL method is created, the definer of the method always
receives the EXECUTE privilege WITH GRANT OPTION.

If an SQL method is created, the definer of the method will only be given
the EXECUTE privilege WITH GRANT OPTION on the method when the
definer has WITH GRANT OPTION on all privileges required to define the
method, or if the definer has SYSADM or DBADM authority. The definer of
an SQL method only acquires privileges if the privileges from which they
are derived exist at the time the method is created. The definer must have
these privileges either directly, or because PUBLIC has the privileges.
Privileges held by groups of which the method definer is a member are not
considered. When using the method, the connected user’s authorization ID
must have the valid privileges on the table or view that the nickname
references at the data source.

e Table access restrictions

If a method is defined as READS SQL DATA, no statement in the method
can access a table that is being modified by the statement which invoked
the method (SQLSTATE 57053).

Examples:

Example 1:

CREATE METHOD BONUS (RATE DOUBLE)
FOR EMP
RETURN SELF..SALARY = RATE

Example 2:

CREATE METHOD SAMEZIP (addr address_t)
RETURNS INTEGER
FOR address_t
RETURN
(CASE
WHEN (self..zip = addr..zip)
THEN 1
ELSE 0
END)

Example 3:

CREATE METHOD DISTANCE (address_t)
FOR address_t
EXTERNAL NAME 'addresslibl!distance’
TRANSFORM GROUP func_group

Related reference:

« I'RETURN statement” on page 794|

+ "Compound SQL (Dynamic)” on page 123|

* ["CREATE FUNCTION (External Scalar)” on page 19()

SQL Reference, Volume 2

CREATE NICKNAME

CREATE NICKNAME

The CREATE NICKNAME statement creates a nickname for a data source
object, such as a table or a view.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ IMPLICIT_SCHEMA authority on the federated database, if the implicit or
explicit schema name of the nickname does not exist

* CREATEIN privilege on the schema, if the schema name of the nickname
exists

In addition, the user’s authorization ID at the data source must hold the
privilege to select from the data source catalog the metadata about the table

or view for which the nickname is being created.

Syntax:

»»—CREATE NICKNAME—nickname FOR—remote-object-name »><
_E‘ non-relational-data-definition ’J

non-relational-data-definition:

|—| nickname-column-Tist '—FOR SERVER—server—name—I options-Tist i I
nickname-column-list:

-

|—(—'| nickname-column-definition i) |

Chapter 1. Statements 291

CREATE NICKNAME

nickname-column-definition:

F—column-name Tocal-data-type | |
_I ! |—NOT NULLJ |—‘ options-Tlist ’J

local-data-type:

F—SMALLINT I
INTEGER
—[INTJ
—BIGINT
——FLOAT

|—(—integer‘—)—|
—REAL:

PRECISION
[1

—DOUBLE
——DECIMAL

—DEC l—(—integer—l_——l—)—l
—NUMERIC— ,integer

—NUM——
CHARACTER

|—CHAR—I |—(z’nteger)—|

VARCHAR

CHARACTER VARYINGJ
Come——

(—inz?eger—)J

—DATE
—TIME
—TIMESTAMP

options-list:

|_ ADD
|—0PTIONS—(—'I_——|—user—option—name—string—constant) |

Description:

nickname
Names the nickname. The nickname specifies the federated server’s
identifier for the object at the data source. The nickname, including the
implicit or explicit qualifier, must not identify a table, view, alias, or
nickname described in the catalog. The schema name must not begin with
'SYS” (SQLSTATE 42939).

remote-object-name
Specifies a three-part identifier with format data-source-name.remote-schema-
name.remote-table-name, or a two-part identifier with format
data-source-name.remote-table-name, for use with data sources that do not
support schema names.

data-source-name
Names the data source that contains the table or view for which the

292 SQL Reference, Volume 2

CREATE NICKNAME

nickname is being created. The data-source-name is the same name that
was assigned to the data source in the CREATE SERVER statement.

remote-schema-name
Names the schema to which the table or view belongs. If the remote
schema name contains any special or lowercase characters, it must be
enclosed by double quotation marks.

remote-table-name
Names the specific data source object (such as a table or a view) for
which the nickname is being created. The table cannot be a declared
temporary table (SQLSTATE 42995). If the remote table name contains
any special or lowercase characters, it must be enclosed by double
quotation marks.

non-relational-data-definition
Defines the data to be accessed through a non-relational wrapper.

nickname-column-definition
Defines the local attributes of the column for the nickname. Some
wrappers require these attributes to be specified, while other
wrappers allow the attributes to be determined from the data source.

column-name
Specifies the local name for the column. The name may be
different than the corresponding column of the remote-object-name.

local-data-type
Specifies the local data type for the column. Wrappers may only
support a subset of the SQL data types. For descriptions of
specific data types, see “CREATE TABLE”.

NOT NULL
Specifies that the column does not allow null values.

options-list
Allows the specification of column options. Some wrappers may
require column options to be specified.

FOR SERVER server-name
Specifies a server that was registered using the CREATE SERVER
statement. This server will be used to access the data for the
nickname.

options-list
Allows the specification of nickname options. For more information
on the user-option-name and string-constant values that are supported,
see “User options for federated systems”.

Notes:

Chapter 1. Statements 293

CREATE NICKNAME

294

* The data source object (such as a table or a view) that the nickname

references must already exist at the data source denoted by the first
qualifier in remote-object-name.

The federated server does not support those data source data types that
correspond to the following DB2 data types: LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, and user-defined types. When a nickname is
defined for a data source table or view, only those columns in the table or
view that have supported data types will be defined to, and can be queried
from, the federated database. When the CREATE NICKNAME statement is
run against a table or view that has columns with unsupported data types,
an error is issued.

Because data types might be incompatible between data sources, the
federated server makes minor adjustments to store remote catalog data
locally as needed.

The maximum allowable length of DB2 index names is 18 characters. If a
nickname is being created for a table that has an index whose name exceeds
this length, the entire name is not cataloged. Rather, DB2 truncates it to 18
characters. If the string formed by these characters is not unique within the
schema to which the index belongs, DB2 attempts to make it unique by
replacing the last character with 0. If the result is still not unique, DB2
changes the last character to 1. DB2 repeats this process with numbers 2
through 9, and if necessary, with numbers 0 through 9 for the name’s
seventeenth character, sixteenth character, and so on, until a unique name is
generated. To illustrate: The index of a data source table is named
ABCDEFGHIJKLMNOPQRSTUVWXYZ. The names
ABCDEFGHIJKLMNOPQR and ABCDEFGHIJKLMNOPQO already exist in
the schema to which this index belongs. The new name is over 18
characters; therefore, DB2 truncates it to ABCDEFGHIJKLMNOPQR.
Because this name already exists in the schema, DB2 changes the truncated
version to ABCDEFGHIJKLMNOPQO. Because this latter name exists, too,
DB2 changes the truncated version to ABCDEFGHIJKLMNOPQ1. This
name does not already exist in the schema, so DB2 now accepts it as a new
name.

When a nickname is created for a data source object, DB2 stores the names
of the nickname columns in the catalog. When the data source object is a
table or a view, DB2 makes the nickname column names the same as the
table or view column names. If a name exceeds the maximum allowable
length for DB2 column names, DB2 truncates the name to this length. If the
truncated version is not unique among the other column names in the table
or view, DB2 makes it unique by following the procedure described in the
preceding paragraph.

If the definition of the remote data source object is changed (e.g., a column
is deleted or a data type is changed), the nickname should be dropped and
recreated. Otherwise, errors may occur when the nickname is used in an
SQL statement.

SQL Reference, Volume 2

CREATE NICKNAME
Examples:

Example 1: Create a nickname for a view, DEPARTMENT, that is in a schema
called HEDGES. This view is stored in a DB2 Universal Database for OS/390
and z/0OS data source called OS390A.

CREATE NICKNAME DEPT FOR 0S390A.HEDGES.DEPARTMENT

Example 2: Select all records from the view for which a nickname was created
in Example 1. The view must be referenced by its nickname. (It can be
referenced it by its own name only in pass-through sessions.)

SELECT * FROM 0S390A.HEDGES.DEPARTMENT Invalid
SELECT * FROM DEPT Valid after nickname DEPT is created

Example 3: The following example shows a CREATE NICKNAME statement
for the table-structured file DRUGDATA1.TXT.
CREATE NICKNAME DRUGDATA1(DCODE INTEGER,DRUG CHAR(20),MANUFACTURER CHAR(20))
FOR SERVER biochem_lab
OPTIONS
(FI LE_PATH ' /usr/pat/DRUGDATAL.TXT',
COLUMN_DELIMITER ',",
KEY_COLUMN 'Dcode’,
VALIDATE_DATA FILE 'Y')

Related reference:

+ ["CREATE TABLE” on page 332

+ [“CREATE SERVER” on page 328|

¢ “Column options for federated systems” in the Federated Systems Guide

* “User options for federated systems” in the Federated Systems Guide

Chapter 1. Statements 295

CREATE PROCEDURE

CREATE PROCEDURE

The CREATE PROCEDURE statement defines a procedure with an application
server.

There are two different types of procedures that can be created using this
statement. Each of these is described separately.

* External. The procedure body is written in a programming language. The
external executable is referenced by a procedure defined with an application
server, along with various attributes of the procedure.

* SQL. The procedure body is written in SQL. The procedure body is defined
with an application server along with various attributes of the procedure.

Related reference:
* ["'CREATE PROCEDURE (External)” on page 297
* ["CREATE PROCEDURE (SQL)” on page 311|

296 SQL Reference, Volume 2

CREATE PROCEDURE (External)

CREATE PROCEDURE (External)

The CREATE PROCEDURE (External) statement is used to define an external
procedure with an application server.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority

¢ CREATE_EXTERNAL_ROUTINE authority on the database and at least one
of:

— IMPLICIT_SCHEMA authority on the database, if the schema name of
the procedure does not refer to an existing schema

— CREATEIN privilege on the schema, if the schema name of the
procedure refers to an existing schema

To create a not-fenced stored procedure, the privileges held by the
authorization ID of the statement must also include at least one of the
following:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority.

To create a fenced stored procedure, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:

»>—CREATE PROCEDURE—procedure-name >

Chapter 1. Statements 297

CREATE PROCEDURE (External)

[T
v [C i data-type
I:OUT— parameter-name

INOUT-

DYNAMIC RESULT SETS 0

@ >

T 7T
SPECIFIC—specific-name DYNAMIC RESULT SETS—integer—

|—MODIFIES SQL DATA— |—NOT DETERMINISTIC— |—CALLED ON NULL INPUT—l
> @ B @ @ >
NO SQL———— DETERMINISTIC
CONTAINS SQL
READS SQL DATA—
»—LANGUAGE C EXTERNAL @ >
JAVA |—NAME—[’string’ jJ
COBOL: identifier
OLE
|—NOT FEDERATED— |—FENCED
" |—FEDERATED ¢ FENCED THREADSAFE——|— "
NOT THREADSAFE
THREADSAFE
NOT FENCED—.J_——I—
|—INHERIT SPECIAL REGISTERS—l
> @ PARAMETER STYLE DB2GENERAL @ >
DB2SQL
GENERAL
GENERAL WITH NULLS—
JAVA
SQL
NO DBINFO—
> |_ o |_ @ >
PROGRAM TYPE SUBjJ DBINFO——
AIN

Description:

procedure-name
Names the procedure being defined. It is a qualified or unqualified name
that designates a procedure. The unqualified form of procedure-name is an
SQL identifier (with a maximum length of 128). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER

298 SQL Reference, Volume 2

CREATE PROCEDURE (External)

precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters must not identify a procedure described in the
catalog (SQLSTATE 42723). The unqualified name, together with the
number of the parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ‘SYS’
(SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type,...)
Identifies the parameters of the procedure, and specifies the mode, data
type, and optional name of each parameter. One entry in the list must be
specified for each parameter that the procedure will expect.

No two identically-named procedures within a schema are permitted to
have exactly the same number of parameters. A duplicate signature raises
an SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the
procedure is the same, even if the data types are not.

IN Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available
to the calling SQL application when control is returned. The default is
IN.

ouT
Identifies the parameter as an output parameter for the procedure.

INOUT
Identifies the parameter as both an input and output parameter for
the procedure.

parameter-name
Optionally specifies the name of the parameter. The parameter name
must be unique for the procedure (SQLSTATE 42734).

data-type
Specifies the data type of the parameter.

* SQL data type specifications and abbreviations, which may be
specified in the data-type definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the procedure, may be specified.

Chapter 1. Statements 299

CREATE PROCEDURE (External)

* User-defined data types are not supported (SQLSTATE 42601).

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being
defined. This specific name can be used when dropping the procedure or
commenting on the procedure. It can never be used to invoke the
procedure. The unqualified form of specific-name is an SQL identifier (with
a maximum length of 18). The qualified form is a schema-name followed by
a period and an SQL identifier. The name, including the implicit or
explicit qualifier, must not identify another routine instance that exists at
the application server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of procedure-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmsshhn.

DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the stored
procedure.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if
so, what type.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements
(SQLSTATE 38001).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the stored procedure (SQLSTATE 38004).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003).

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can
be included in the stored procedure (SQLSTATE 38002 or 42985).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003).

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement
except statements that are not supported in stored procedures
(SQLSTATE 38003).

300 SQL Reference, Volume 2

CREATE PROCEDURE (External)

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same
results for given argument values (DETERMINISTIC) or whether the
procedure depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC procedure must always
return the same result from successive invocations with identical inputs.

This clause currently does not impact processing of the stored procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to stored procedures. This
means that the stored procedure is called regardless of whether any
arguments are null. Any OUT or INOUT parameter can return a null
value or a normal (non-null) value. Responsibility for testing for null
argument values lies with the stored procedure.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the stored procedure body is written.

C This means the database manager will call the stored procedure as if
it were a C procedure. The stored procedure must conform to the C
language calling and linkage convention as defined by the standard
ANSI C prototype.

JAVA
This means the database manager will call the stored procedure as a
method in a Java class.

COBOL
This means the database manager will call the procedure as if it were
a COBOL procedure.

OLE
This means the database manager will call the stored procedure as if
it were a method exposed by an OLE automation object. The
stored-procedure must conform with the OLE automation data types
and invocation mechanism. Also, the OLE automation object needs to
be implemented as an in-process server (DLL). These restrictions are
outlined in the OLE Automation Programmer’s Reference.

LANGUAGE OLE is only supported for stored procedures stored in
DB2 for Windows operating systems. THREADSAFE may not be
specified for procedures defined with LANGUAGE OLE (SQLSTATE
42613).

EXTERNAL
This clause indicates that the CREATE PROCEDURE statement is being

Chapter 1. Statements 301

CREATE PROCEDURE (External)

302

used to register a new procedure based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If the NAME clause is not specified, "NAME procedure-name” is assumed.

NAME ’string’
This clause identifies the name of the user-written code which
implements the procedure being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.

* For LANGUAGE C:

The string specified is the library name and procedure within the
library, which the database manager invokes to execute the stored
procedure being CREATEd. The library (and the procedure within
the library) do not need to exist when the CREATE PROCEDURE
statement is performed. However, when the procedure is called, the
library and procedure within the library must exist and be
accessible from the database server machine.

' library_id ! <
_[absoluzte_path_idJ |—!—proc_idJ

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.

library_id
Identifies the library name containing the procedure. The
database manager will look for the library in the
.../sqllib/function/unfenced directory and the
.../sqllib/function directory (UNIX-based systems), or
...\instance_name\function\unfenced directory and the
...\instance_name\function directory (Windows operating
systems, as specified by the DB2INSTPROF registry variable),
where the database manager will locate the controlling sqllib
directory which is being used to run the database manager. For
example, the controlling sqllib directory in UNIX-based systems
is /u/$DB2INSTANCE/sqllib.

If 'myproc” were the library_id in a UNIX-based system it would
cause the database manager to look for the procedure in library
/u/production/sqllib/function/unfenced /myfunc and
/u/production/sqllib/function/myfunc, provided the database
manager is being run from /u/production.

SQL Reference, Volume 2

CREATE PROCEDURE (External)

For Windows operating systems, the database manager will
look in the LIBPATH or PATH if the library_id is not found in
the function directory.

Stored procedures located in any of these directories do not use
any of the registered attributes.

absolute_path_id
Identifies the full path name of the procedure.

In a UNIX-based system, for example,
"/u/jchui/mylib/myproc” would cause the database manager to
look in /u/jchui/mylib for the myproc procedure.

In Windows operating systems, ‘d:\mylib\myproc” would
cause the database manager to load the myproc.dll file from the
d:\mylib directory.

I proc_id
Identifies the entry point name of the procedure to be invoked.
The ! serves as a delimiter between the library id and the
procedure id. If ! proc_id is omitted, the database manager will
use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ‘'mymod!proc8” would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
proc8 within that library.

In Windows operating systems, ‘'mymod!proc8” would direct the
database manager to load the mymod.dll file and call the
proc8() procedure in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

The body of every stored procedure should be in a directory that is
mounted and available on every partition of the database.

For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the stored procedure being CREATEd. The class
identifier and method identifier do not need to exist when the
CREATE PROCEDURE statement is performed. If a jar_id is
specified, it must exist when the CREATE PROCEDURE statement
is performed. However, when the procedure is called, the class

Chapter 1. Statements 303

CREATE PROCEDURE (External)

304

identifier and the method identifier must exist and be accessible
from the database server machine, otherwise an error (SQLSTATE
42884) is raised.

»»—' —L—_I—class id—[.j—method id— <
Jar_id : !

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

jar_id
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier
or a schema qualified identifier. Examples are ‘'myJar” and
‘mySchema.my]Jar’.

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ‘myPacks.StoredProcs’.
The Java virtual machine will look in directory
"../myPacks/StoredProcs/’ for the classes. In Windows
operating systems, the Java virtual machine will look in
directory ’..\myPacks\StoredProcs\".

method_id
Identifies the method name with the Java class to be invoked.

For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier (method_id), which the
database manager invokes to execute the stored procedure being
created by the statement. The programmatic identifier or class
identifier, and the method identifier do not need to exist when the
CREATE PROCEDURE statement is executed. However, when the
procedure is used in the CALL statement, the method identifier
must exist and be accessible from the database server machine,
otherwise an error results (SQLSTATE 42724).

»»—' —[progid !—method_id—' <
cls id——l_

The name must be enclosed by single quotation marks. Extraneous
blanks are not permitted.
progid

Identifies the programmatic identifier of the OLE object.

A progid is not interpreted by the database manager, but only
forwarded to the OLE automation controller at run time. The

SQL Reference, Volume 2

CREATE PROCEDURE (External)

specified OLE object must be creatable and support late binding
(also known as IDispatch-based binding). By convention,
progids have the following format:

<program_name>.<component_name>.<version>

Because this is only a convention, and not a rule, progids may in
fact have a different format.

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. A clsid is not interpreted
by the database manager, but only forwarded to the OLE APIs
at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used
as the [ibrary-id in the string. Unless it is a delimited identifier, the
identifier is folded to upper case. If the identifier is qualified with a
schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C.

FEDERATED or NOT FEDERATED
This optional clause specifies whether or not federated objects can be
used.

If FEDERATED is specified, federated objects can be accessed from SQL
statements in the procedure. Statements within the procedure that access
federated objects may be subject to special authorization rules.

If NOT FEDERATED is specified, federated objects cannot be used in any
SQL statement in the procedure. Using a federated object will result in an
error (SQLSTATE 55047).

FENCED or NOT FENCED
This clause specifies whether the stored procedure is considered “safe” to
run in the database manager operating environment’s process or address
space (NOT FENCED), or not (FENCED).

If a stored procedure is registered as FENCED, the database manager
protects its internal resources (for example, data buffers) from access by
the procedure. All procedures have the option of running as FENCED or

Chapter 1. Statements 305

CREATE PROCEDURE (External)

306

NOT FENCED. In general, a procedure running as FENCED will not
perform as well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that have not been adequately
checked out can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent failures
that could occur, but cannot guarantee complete integrity when NOT
FENCED stored procedures are used.

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED) is required to register a stored procedure as
NOT FENCED. Only FENCED can be specified for a stored procedure
with LANGUAGE OLE or NOT THREADSAFE.

THREADSAFE or NOT THREADSAFE

Specifies whether the procedure is considered safe to run in the same
process as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

* If the procedure is defined as THREADSAFE, the database manager can
invoke the procedure in the same process as other routines. In general,
to be threadsafe, a procedure should not use any global or static data
areas. Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED procedures can
be THREADSAFE.

e If the procedure is defined as NOT THREADSAFE, the database
manager will never invoke the procedure in the same process as
another routine.

For FENCED procedures, THREADSAFE is the default if the LANGUAGE
is JAVA. For all other languages, NOT THREADSAFE is the default. If the
procedure is defined with LANGUAGE OLE, THREADSAFE may not be
specified (SQLSTATE 42613).

For NOT FENCED procedures, THREADSAFE is the default. NOT
THREADSAFE cannot be specified (SQLSTATE 42613).

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the
procedure will inherit their initial values from the environment of the
invoking statement.

No changes to the special registers are passed back to the caller of the
procedure.

SQL Reference, Volume 2

CREATE PROCEDURE (External)

Non-updatable special registers, such as the datetime special registers,
reflect a property of the statement currently executing, and are therefore
set to their default values.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from stored procedures.

DB2GENERAL
This means that the stored procedure will use a parameter passing
convention that is defined for use with Java methods. This can only
be specified when LANGUAGE JAVA is used.

DB2SQL
In addition to the parameters on the CALL statement, the following
arguments are passed to the stored procedure:

* A vector containing a null indicator for each parameter on the
CALL statement

e The SQLSTATE to be returned to DB2

* The qualified name of the stored procedure

* The specific name of the stored procedure

* The SQL diagnostic string to be returned to DB2

This can only be specified when LANGUAGE C, COBOL, or OLE is
used.

GENERAL
This means that the stored procedure will use a parameter passing
mechanism by which the stored procedure receives the parameters
specified on the CALL. The parameters are passed directly, as
expected by the language; the SQLDA structure is not used. This can
only be specified when LANGUAGE C or COBOL is used.

Null indicators are not directly passed to the program.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement specified under
GENERAL, another argument is passed to the stored procedure. This
additional argument is a vector of null indicators, one for each of the
parameters on the CALL statement. In C, this would be an array of
short ints. This can only be specified when LANGUAGE C or COBOL
is used.

JAVA
This means that the stored procedure will use a parameter passing
convention that conforms to the Java language and SQLj Routines

Chapter 1. Statements 307

CREATE PROCEDURE (External)

308

specification. IN/OUT and OUT parameters will be passed as single
entry arrays to facilitate returning values. This can only be specified
when LANGUAGE JAVA is used.

PARAMETER STYLE JAVA procedures do not support the DBINFO or
PROGRAM TYPE clauses.

SQL
In addition to the parameters on the CALL statement, the following
arguments are passed to the stored procedure:

* A null indicator for each parameter on the CALL statement
The SQLSTATE to be returned to DB2
* The qualified name of the stored procedure

* The specific name of the stored procedure
The SQL diagnostic string to be returned to DB2

This can only be specified when LANGUAGE C, COBOL, or OLE is
used.

PROGRAM TYPE

Specifies whether the stored procedure expects parameters in the style of
a main routine or a subroutine.

SUB
The stored procedure expects the parameters to be passed as separate
arguments.

MAIN
The stored procedure expects the parameters to be passed as an
argument counter, and a vector of arguments (argc, argv). The name
of the stored procedure to be invoked must also be "main”. Stored
procedures of this type must still be built in the same fashion as a
shared library, rather than a stand-alone executable.

The default for PROGRAM TYPE is SUB. PROGRAM TYPE MAIN is only
valid for LANGUAGE C or COBOL, and PARAMETER STYLE
GENERAL, GENERAL WITH NULLS, SQL, or DB2SQL.

DBINFO or NO DBINFO

Specifies whether specific information known by DB2 is passed to the
stored procedure when it is invoked as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613). It is
also not supported for PARAMETER STYLE JAVA or DB2GENERAL.

If DBINFO is specified, a structure containing the following information is
passed to the stored procedure:

* Data base name - the name of the currently connected database.

SQL Reference, Volume 2

CREATE PROCEDURE (External)

* Application ID - unique application ID which is established for each
connection to the database.

* Application Authorization ID - the application run-time authorization
ID.

* Code page - identifies the database code page.

¢ Database version/release - identifies the version, release and
modification level of the database server invoking the stored procedure.

* Platform - contains the server’s platform type.

The DBINFO structure is common for all external routines and contains
additional fields that are not relevant to procedures.

Notes:
* Compatibilities
— For compatibility with DB2 UDB for OS/390 and z/OS:
- The following syntax is accepted as the default behavior:
* ASUTIME NO LIMIT
¢ COMMIT ON RETURN NO
« NO COLLID
» STAY RESIDENT NO
— For compatibility with previous versions of DB2:
- RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
- NULL CALL can be specified in place of CALLED ON NULL INPUT.
- DB2GENRL can be specified in place of DB2GENERAL.
- SIMPLE CALL can be specified in place of GENERAL.

- SIMPLE CALL WITH NULLS can be specified in place of GENERAL
WITH NULLS.

- PARAMETER STYLE DB2DARI is supported.

* Creating a procedure with a schema name that does not already exist
results in the implicit creation of that schema, provided the authorization
ID of the statement has IMPLICIT_SCHEMA authority. The schema owner
is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.
* Privileges
— The definer of a procedure always receives the EXECUTE privilege
WITH GRANT OPTION on the procedure, as well as the right to drop
the procedure.

— When the procedure is used in an SQL statement, the procedure definer
must have the EXECUTE privilege on any packages used by the
procedure.

Examples:

Chapter 1. Statements 309

CREATE PROCEDURE (External)

310

Example 1: Create the procedure definition for a stored procedure, written in
Java, that is passed a part number and that returns the cost of the part and
the quantity that is currently available.
CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME 'parts.onhand'
LANGUAGE JAVA PARAMETER STYLE JAVA

Example 2: Create the procedure definition for a stored procedure, written in
C, that is passed an assembly number and returns the number of parts that
make up the assembly, total part cost, and a result set that lists the part
numbers, quantity, and unit cost of each part.
CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
OUT NUM_PARTS INTEGER,
OUT COST DOUBLE)
EXTERNAL NAME 'parts!assembly’
DYNAMIC RESULT SETS 1 NOT FENCED
LANGUAGE C PARAMETER STYLE GENERAL

Related reference:
* “SQL statements allowed in routines” in the SQL Reference, Volume 1
* “Special registers” in the SQL Reference, Volume 1

Related samples:

* “spcreate.db2 -- How to catalog the stored procedures contained in
spserver.sqc ”

* “spcreate.db2 -- Catalog the DB2 CLI stored procedures contained in
spserver.sqc ”

* “SpCreate.db2 -- How to catalog the stored procedures contained in
SpServer.java ”

* “SpCreate.db2 -- How to catalog the stored procedures contained in
SpServer.sqlj ”

SQL Reference, Volume 2

CREATE PROCEDURE (SQL)

CREATE PROCEDURE (SQL)

The CREATE PROCEDURE (SQL) statement is used to define an SQL
procedure with an application server.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* SYSADM or DBADM authority
¢ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the procedure does not exist

* CREATEIN privilege on the schema, if the schema name of the procedure
refers to an existing schema.

If the authorization ID of the statement does not have SYSADM or DBADM
authority, the privileges that the authorization ID of the statement holds must
also include all of the privileges necessary to invoke the SQL statements that
are specified in the procedure body.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax:
»»—CREATE PROCEDURE—procedure-name >
»- ' >
L)
e
T parameter-name—data-type
tom_
INOUT-

Chapter 1. Statements 311

CREATE PROCEDURE (SQL)

312

DYNAMIC RESULT SETS 0

@ >

T ToC
SPECIFIC—specific-name DYNAMIC RESULT SETS—integer—

|—MODIFIES SQL DATA— |—NOT DETERMINISTIC— |—CALLED ON NULL INPUT—l
> @ B @ { >
CONTAINS SQL- DETERMINISTIC
READS SQL DATA——
|—INHERIT SPECIAL REGISTERS—l
». ' ' »
i:FEDERATED—
NOT FEDERATED—
|—LANGUAGE SQL—l
> .—I SQL-procedure-body i >

SQL-procedure-body:

F—SQL-procedure-statement |

Description:

procedure-name
Names the procedure being defined. It is a qualified or unqualified name
that designates a procedure. The unqualified form of procedure-name is an
SQL identifier (with a maximum length of 128). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters, must not identify a procedure described in the
catalog (SQLSTATE 42723). The unqualified name, together with the
number of parameters, is unique within its schema, but does not need to
be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”.
Otherwise, an error (SQLSTATE 42939) is raised.

(IN | OUT | INOUT parameter-name data-type,...)
Identifies the parameters of the procedure, and specifies the mode, name,
and data type of each parameter. One entry in the list must be specified
for each parameter that the procedure will expect.

It is possible to register a procedure that has no parameters. In this case,
the parentheses must still be coded, with no intervening data types. For
example:

SQL Reference, Volume 2

CREATE PROCEDURE (SQL)
CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to

have exactly the same number of parameters. A duplicate signature raises
an SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the
procedure is the same, even if the data types are not.

IN | OUT | INOUT
Specifies the mode of the parameter.

IN Identifies the parameter as an input parameter to the
procedure. Any changes made to the parameter within the
procedure are not available to the calling SQL application
when control is returned. The default is IN.

OUT Identifies the parameter as an output parameter for the
procedure.

INOUT
Identifies the parameter as both an input and output
parameter for the procedure.

parameter-name
Specifies the name of the parameter. The parameter name must be
unique for the procedure (SQLSTATE 42734).

data-type
Specifies the data type of the parameter.

* SQL data type specifications and abbreviations that can be specified
in the data-type definition of a CREATE TABLE statement, and that
have a correspondence in the language that is being used to write
the procedure, may be specified.

* User-defined data types are not supported (SQLSTATE 42601).

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being
defined. This specific name can be used when dropping the procedure or
commenting on the procedure. It can never be used to invoke the
procedure. The unqualified form of specific-name is an SQL identifier (with
a maximum length of 18). The qualified form is a schema-name followed by
a period and an SQL identifier. The name, including the implicit or
explicit qualifier, must not identify another procedure instance that exists
at the application server; otherwise an error (SQLSTATE 42710) is raised.

Chapter 1. Statements 313

CREATE PROCEDURE (SQL)

314

The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier for procedure-name, or an error (SQLSTATE 42882) is
raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmsshhn.

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the stored
procedure.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates the level of data access for SQL statements included in the
procedure.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the stored procedure (SQLSTATE 38004 or 42985).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003 or 42985).

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can
be included in the stored procedure (SQLSTATE 38002 or 42985).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003 or 42985).

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement

except statements that are not supported in stored procedures
(SQLSTATE 38003 or 42985).

DETERMINISTIC or NOT DETERMINISTIC

This clause specifies whether the procedure always returns the same
results for given argument values (DETERMINISTIC) or whether the
procedure depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC procedure must always
return the same result from successive invocations with identical inputs.

This clause currently does not impact processing of the stored procedure.

CALLED ON NULL INPUT

CALLED ON NULL INPUT always applies to stored procedures. This
means that the stored procedure is called regardless of whether any
arguments are null. Any OUT or INOUT parameter can return a null
value or a normal (non-null) value. Responsibility for testing for null
argument values lies with the stored procedure.

SQL Reference, Volume 2

CREATE PROCEDURE (SQL)

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the
procedure will inherit their initial values from the environment of the
invoking statement. For a routine invoked in a nested object (for example
a trigger or view), the initial values are inherited from the runtime
environment (not inherited from the object definition).

No changes to the special registers are passed back to the caller of the
procedure.

Non-updatable special registers, such as the datetime special registers,
reflect a property of the statement currently executing, and are therefore
set to their default values.

FEDERATED or NOT FEDERATED
This optional clause specifies whether or not federated objects can be
used.

If neither option is specified, the body of the procedure is examined. If a
federated object is referenced in the body of the procedure, a warning is
raised (SQLSTATE 01639) and the procedure is created as FEDERATED. If
no federated object is referenced, the procedure is defined as NOT
FEDERATED.

If FEDERATED is specified, federated objects can be accessed from SQL
statements in the procedure. Statements within the procedure that access
federated objects may be subject to special authorization rules.

If NOT FEDERATED is specified, federated objects cannot be used in any
SQL statement in the procedure. Using a federated object will result in an
error (SQLSTATE 429BA).

LANGUAGE SQL
This clause is used to specify that the procedure body is written in the
SQL language.

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure.
Multiple SQL-procedure-statements can be specified within a compound
statement.

Notes:
* Compatibilities
— For compatibility with DB2 UDB for OS/390 and z/OS:
- The following syntax is accepted as the default behavior:
» ASUTIME NO LIMIT
+ COMMIT ON RETURN NO
+ NO COLLID

Chapter 1. Statements 315

CREATE PROCEDURE (SQL)

316

» STAY RESIDENT NO
— For compatibility with previous versions of DB2:
- RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
- NULL CALL can be specified in place of CALLED ON NULL INPUT.

— Creating a procedure with a schema name that does not already exist
will result in the implicit creation of that schema, provided that the
authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is
granted to PUBLIC.

— Privileges
The definer of a procedure always receives the EXECUTE privilege

WITH GRANT OPTION on the procedure, as well as the right to drop
the procedure.

Examples:

Example 1: Create an SQL procedure that returns the median staff salary.
Return a result set containing the name, position, and salary of all employees
who earn more than the median salary.

CREATE PROCEDURE MEDIAN_RESULT SET (OUT medianSalary DOUBLE)
RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE v_numRecords INT DEFAULT 1;
DECLARE v_counter INT DEFAULT 0;

DECLARE c1 CURSOR FOR
SELECT CAST(salary AS DOUBLE)
FROM staff
ORDER BY salary;
DECLARE c2 CURSOR WITH RETURN FOR
SELECT name, job, CAST(salary AS INTEGER)
FROM staff
WHERE salary > medianSalary
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords
FROM STAFF;
OPEN cl;
WHILE v_counter < (v_numRecords / 2 + 1)
DO
FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

SQL Reference, Volume 2

CREATE PROCEDURE (SQL)

END WHILE;

CLOSE c1;

OPEN c2;
END

Related reference:
* “SQL statements allowed in routines” in the SQL Reference, Volume 1
* “Special registers” in the SQL Reference, Volume 1

Related samples:
* “basecase.db2 -- To create the UPDATE_SALARY SQL procedure ”
* “nestcase.db2 -- To create the BUMP_SALARY SQL procedure ”

* “nestedsp.db2 -- To create the OUT_AVERAGE, OUT_MEADIN and
MAX_SALARY SQL procedures ”

* “rsultset.db2 -- To create the MEDIAN_RESULT_SET SQL procedure ”

Chapter 1. Statements 317

CREATE SCHEMA

CREATE SCHEMA

318

The CREATE SCHEMA statement defines a schema. It is also possible to
create some objects and grant privileges on objects within the statement.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

An authorization ID that holds SYSADM or DBADM authority can create a
schema with any valid schema-name or authorization-name.

An authorization ID that does not hold SYSADM or DBADM authority can
only create a schema with a schema-name or authorization-name that matches
the authorization ID of the statement.

If the statement includes any schema-SQL-statements the privileges held by the
authorization-name (if not specified, it defaults to the authorization ID of the
statement) must include at least one of the following;:

* The privileges required to perform each of the schema-SQL-statements

* SYSADM or DBADM authority.

Syntax:
»»—CREATE SCHEMA schema-name >
EAUTHORIZATION—authorization-name
schema-name—AUTHORIZATION—authorization-name—

> »><

Lschema—SOL-s tatementJ—‘

Description:

schema-name
Names the schema. The name must not identify a schema already
described in the catalog (SQLSTATE 42710). The name cannot begin with
"SYS"” (SQLSTATE 42939). The owner of the schema is the authorization
ID that issued the statement.

AUTHORIZATION authorization-name
Identifies the user that is the owner of the schema. The value

SQL Reference, Volume 2

CREATE SCHEMA

authorization-name is also used to name the schema. The authorization-name
must not identify a schema already described in the catalog (SQLSTATE
42710).

schema-name AUTHORIZATION authorization-name

Identifies a schema called schema-name with the user called
authorization-name as the schema owner. The schema-name must not
identify a schema-name for a schema already described in the catalog
(SQLSTATE 42710). The schema-name cannot begin with "SYS" (SQLSTATE
42939).

schema-SQL-statement

SQL statements that can be included as part of the CREATE SCHEMA
statement are:

* CREATE TABLE statement, excluding typed tables and materialized
query tables

* CREATE VIEW statement, excluding typed views
* CREATE INDEX statement

* COMMENT statement

* GRANT statement

Notes:

The owner of the schema is determined as follows:

- If an AUTHORIZATION clause is specified, the specified
authorization-name is the schema owner

- If an AUTHORIZATION clause is not specified, the authorization ID that
issued the CREATE SCHEMA statement is the schema owner.

The schema owner is assumed to be a user (not a group).

When the schema is explicitly created with the CREATE SCHEMA
statement, the schema owner is granted CREATEIN, DROPIN, and
ALTERIN privileges on the schema with the ability to grant these privileges
to other users.

The definer of any object created as part of the CREATE SCHEMA
statement is the schema owner. The schema owner is also the grantor for
any privileges granted as part of the CREATE SCHEMA statement.

Unqualified object names in any SQL statement within the CREATE
SCHEMA statement are implicitly qualified by the name of the created
schema.

If the CREATE statement contains a qualified name for the object being
created, the schema name specified in the qualified name must be the same
as the name of the schema being created (SQLSTATE 42875). Any other
objects referenced within the statements may be qualified with any valid
schema name.

Chapter 1. Statements 319

CREATE SCHEMA

320

* If the AUTHORIZATION clause is specified and DCE authentication is
used, the group membership of the authorization-name specified will not be
considered in evaluating the authorizations required to perform the
statements that follow the clause. If the authorization-name specified is
different than the authorization id creating the schema, an authorization
failure may result during the execution of the CREATE SCHEMA statement.

* It is recommended not to use "SESSION" as a schema name. Since declared
temporary tables must be qualified by "SESSION”, it is possible to have an
application declare a temporary table with a name identical to that of a
persistent table. An SQL statement that references a table with the schema
name "SESSION" will resolve (at statement compile time) to the declared
temporary table rather than a persistent table with the same name. Since an
SQL statement is compiled at different times for static embedded and
dynamic embedded SQL statements, the results depend on when the
declared temporary table is defined. If persistent tables, views or aliases are
not defined with a schema name of "SESSION”", these issues do not require
consideration.

Examples:

Example 1: As a user with DBADM authority, create a schema called RICK
with the user RICK as the owner.

CREATE SCHEMA RICK AUTHORIZATION RICK

Example 2: Create a schema that has an inventory part table and an index
over the part number. Give authority on the table to user JONES.

CREATE SCHEMA INVENTRY

CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QUANTITY INTEGER)

CREATE INDEX PARTIND ON PART (PARTNO)

GRANT ALL ON PART TO JONES

Example 3: Create a schema called PERS with two tables that each have a
foreign key that references the other table. This is an example of a feature of
the CREATE SCHEMA statement that allows such a pair of tables to be
created without the use of the ALTER TABLE statement.

CREATE SCHEMA PERS

CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,
DEPTNAME VARCHAR(14),
MANAGER ~ SMALLINT,
DIVISION VARCHAR(10),
LOCATION VARCHAR(13),
CONSTRAINT PKEYDNO

SQL Reference, Volume 2

CREATE SCHEMA

PRIMARY KEY (DEPTNUMB),
CONSTRAINT FKEYMGR

FOREIGN KEY (MANAGER)

REFERENCES STAFF (ID))

CREATE TABLE STAFF (ID SMALLINT NOT NULL,
NAME VARCHAR(9) ,
DEPT SMALLINT,
JOB VARCHAR(5) ,
YEARS SMALLINT,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
CONSTRAINT PKEYID
PRIMARY KEY (ID),
CONSTRAINT FKEYDNO
FOREIGN KEY (DEPT)
REFERENCES ORG (DEPTNUMB))

Related reference:

* ['COMMENT” on page 109

+ ["CREATE INDEX” on page 268|

[‘CREATE TABLE” on page 332|

[‘CREATE VIEW” on page 463|

[‘'GRANT (Table, View, or Nickname Privileges)” on page 590

Chapter 1. Statements 321

CREATE SEQUENCE

CREATE SEQUENCE

322

The CREATE SEQUENCE statement creates a sequence at the application
server.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following:

* CREATEIN privilege for the implicitly or explicitly specified schema
* SYSADM or DBADM authority

Syntax:

—AS INTEGER——
»>—CREATE SEQUENCE—sequence-name—@ @ >
—AS—data-type—

—INCREMENT BY 1

» I_ —l . . »
START WITH—numeric-constant '—INCREMENT BY—numeric-constant—
—NO MINVALUE—— |—N0 MAXVALUE
> { I—M { >
“MINVALUE—numeric-constant— AXVALUE—numeric-constant—
—NO CYCLE— rCACHE 20——mMm M |—N0 ORDER—
> ® ® " ® >
—CYCLE— I:CACHE—integer-constant— RDER——
NO CACHE
Description:

sequerce-naime
Names the sequence. The combination of name, and the implicit or
explicit schema name must not identify an existing sequence at the
current server (SQLSTATE 42710).

The unqualified form of sequence-name is an SQL identifier. The qualified
form is a qualifier followed by a period and an SQL identifier. The
qualifier is a schema name.

SQL Reference, Volume 2

CREATE SEQUENCE

If the sequence name is explicitly qualified with a schema name, the
schema name cannot begin with ‘SYS” or an error (SQLSTATE 42939) is
raised.

AS data-type
Specifies the data type to be used for the sequence value. The data type
can be any exact numeric type (SMALLINT, INTEGER, BIGINT or
DECIMAL) with a scale of zero, or a user-defined distinct type or
reference type for which the source type is an exact numeric type with a
scale of zero (SQLSTATE 42815). The default is INTEGER.

START WITH numeric-constant
Specifies the first value for the sequence. This value can be any positive or
negative value that could be assigned to a column of the data type
associated with the sequence (SQLSTATE 42815), without non-zero digits
existing to the right of the decimal point (SQLSTATE 428FA). The default
is MINVALUE for ascending sequences and MAXVALUE for descending
sequences.

This value is not necessarily the value that a sequence would cycle to
after reaching the maximum or minimum value of the sequence. The
START WITH clause can be used to start a sequence outside the range
that is used for cycles. The range used for cycles is defined by
MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This
value can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE 42815),
and does not exceed the value of a large integer constant (SQLSTATE
42820), without non-zero digits existing to the right of the decimal point
(SQLSTATE 428FA).

If this value is negative, this is a descending sequence. If this value is 0 or
positive, this is an ascending sequence. The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles
or stops generating values, or an ascending sequence cycles to after
reaching the maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value
can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE
42815), without non-zero digits existing to the right of the decimal
point (SQLSTATE 428FA), but the value must be less than or equal to
the maximum value (SQLSTATE 42815).

Chapter 1. Statements 323

CREATE SEQUENCE

NO MINVALUE
For an ascending sequence, the value is the START WITH value, or 1
if START WITH is not specified. For a descending sequence, the value
is the minimum value of the data type associated with the sequence.
This is the default.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either
cycles or stops generating values, or a descending sequence cycles to after
reaching the minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value
can be any positive or negative value that could be assigned to a
column of the data type associated with the sequence (SQLSTATE
42815), without non-zero digits existing to the right of the decimal
point (SQLSTATE 428FA), but the value must be greater than or equal
to the minimum value (SQLSTATE 42815).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type associated with the sequence. For a descending sequence,
the value is the START WITH value, or -1 if START WITH is not
specified.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the
sequence can be reached either with the next value landing exactly on the
boundary condition, or by overshooting it.

CYCLE
Specifies that values continue to be generated for this sequence after
the maximum or minimum value has been reached. If this option is
used, after an ascending sequence reaches its maximum value it
generates its minimum value; after a descending sequence reaches its
minimum value it generates its maximum value. The maximum and
minimum values for the sequence determine the range that is used for
cycling.
When CYCLE is in effect, then duplicate values can be generated for
the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached. This
is the default.

324 SQL Reference, Volume 2

CREATE SEQUENCE

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are
preallocated and kept in memory. Preallocating and storing values in
the cache reduces synchronous I/0 to the log when values are
generated for the sequence.

In the event of a system failure, all cached sequence values that have
not been used in committed statements are lost (that is, they will
never be used). The value specified for the CACHE option is the
maximum number of sequence values that could be lost in case of
system failure.

The minimum value is 2 (SQLSTATE 42815). The default value is
CACHE 20.

NO CACHE
Specifies that values of the sequence are not to be preallocated. It
ensures that there is not a loss of values in the case of a system
failure, shutdown or database deactivation. When this option is
specified, the values of the sequence are not stored in the cache. In
this case, every request for a new value for the sequence results in
synchronous I/0O to the log.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of
request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in
order of request. This is the default.

Notes:

* Sequences are not supported in a database with multiple partitions
(SQLSTATE 42997). A sequence cannot be created if more than one partition
for the database exists. A database that includes any sequence objects
cannot be started with more than one partition.

* Compatibilities
— For compatibility with previous versions of DB2:
- A comma can be used to separate multiple sequence options
— The following syntax is also supported:

Chapter 1. Statements 325

CREATE SEQUENCE

326

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and
NOORDER.

* It is possible to define a constant sequence, that is, one that would always
return a constant value. This could be done by specifying an INCREMENT
value of zero and a START WITH value that does not exceed MAXVALUE,
or by specifying the same value for START WITH, MINVALUE and
MAXVALUE. For a constant sequence, each time NEXTVAL is invoked for
the sequence, the same value is returned. A constant sequence can be used
as a numeric global variable. ALTER SEQUENCE can be used to adjust the
values that will be generated for a constant sequence.

* A sequence can be cycled manually by using the ALTER SEQUENCE
statement. If NO CYCLE is implicitly or explicitly specified, the sequence
can be restarted or extended using the ALTER SEQUENCE statement to
cause values to continue to be generated once the maximum or minimum
value for the sequence has been reached.

* A sequence can be explicitly defined to cycle by specifying the CYCLE
keyword. Use the CYCLE option when defining a sequence to indicate that
the generated values should cycle once the boundary is reached. When a
sequence is defined to automatically cycle (i.e., CYCLE was explicitly
specified), the maximum or minimum value generated for a sequence may
not be the actual MAXVALUE or MINVALUE specified if the increment is a
value other than 1 or -1. For example, the sequence defined with START
WITH=1, INCREMENT=2, MAXVALUE=10 will generate a maximum value of 9,
and will not generate the value 10. When defining a sequence with CYCLE,
carefully consider the impact of the values for MINVALUE, MAXVALUE
and START WITH.

* Caching sequence numbers implies that a range of sequence numbers can
be kept in memory for fast access. When an application accesses a sequence
that can allocate the next sequence number from the cache, the sequence
number allocation can happen quickly. However, if an application accesses
a sequence that cannot allocate the next sequence number from the cache,
the sequence number allocation may require having to wait for I/O
operations to persistent storage. The choice of the value for CACHE should
be done keeping in mind the performance and application requirements
tradeoffs.

* The owner of a sequence has ALTER and USAGE privileges on the
sequence. Only the USAGE privilege can be granted by the owner, and only
to PUBLIC. The definer of a sequences is granted ALTER and USAGE
privileges with the grant option. The definer can also drop the sequence.

Examples:

Example 1: Create a sequence called ORG_SEQ that starts at 1, increments by
1, does not cycle, and caches 24 values at a time:

SQL Reference, Volume 2

CREATE SEQUENCE

CREATE SEQUENCE ORG_SEQ
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

Related samples:

¢ “DbSeq.java -- How to create, alter and drop a sequence in a database
(JDBC)”

Chapter 1. Statements 327

CREATE SERVER

CREATE SERVER

328

The CREATE SERVER statement defines a data source to a federated database.
(In this statement, the term SERVER and the parameter names that start with
server- refer only to data sources in a federated system. They do not refer to
the federated server in such a system, or to DRDA application servers.)

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The authorization ID of the statement must have SYSADM or DBADM
authority on the federated database.

Syntax:

»»>—CREATE SERVER—server-name |_ _| >
TYPE—server-type

WRAPPER—wrapper-name >

|—VERSION—| server-version ’J

|—AUTHORIZATION—remote—aul‘hor'z’zation—name l_ _| |
PASSWORD—password:

|_ AD
»OPTIONS—(—'I_—D—I—server—option-name—string—constant) ><

server-version:

I version |_ |
.—release
.—mod-

version-string-constant

Description:

SQL Reference, Volume 2

CREATE SERVER

server-name
Names the data source that is being defined to the federated database.
The name must not identify a data source that is described in the catalog.
The server-name must not be the same as the name of any table space in
the federated database.

TYPE server-type
Specifies the type of data source denoted by server-name. This option is
required for all relational wrappers: DRDA, SQLNET, NET8, INFORMIX,
CTLIB, DBLIB, MSSQLODBC3, and DJXMSSQL3.

VERSION
Specifies the version of the data source denoted by server-name.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3").

WRAPPER wrapper-name
Names the wrapper that the federated server uses to interact with data
sources of the type and version denoted by server-type and ‘server-version’.

AUTHORIZATION remote-authorization-name
Specifies the authorization ID under which any necessary actions are
performed at the data source when the CREATE SERVER statement is
processed. This ID must hold the authority (BINDADD or its equivalent)
that the necessary actions require. If the remote-authorization-name is
specified in mixed or lowercase characters (and the remote data source
has case sensitive authorization names), it should be enclosed by double
quotation marks.

PASSWORD password
Specifies the password associated with the authorization ID represented
by remote-authorization-name. If password is not specified, it will default to
the password for the ID under which the user is connected to the
federated database. If the password is specified in mixed or lowercase

Chapter 1. Statements 329

CREATE SERVER

330

characters (and the remote data source has case sensitive passwords), it
should be enclosed by double quotation marks.

OPTIONS

Indicates what server options are to be enabled.

ADD
Enables one or more server options.

server-option-name
Names a server option that will be used to either configure or provide
information about the data source denoted by server-name.

string-constant
Specifies the setting for server-option-name as a character string
constant.

Notes:

If remote-authorization-name is not specified, the authorization ID for the
federated database will be used.

The password should be specified in the case required by the data source; if
any letters in password must be in lowercase, enclose password in quotation
marks. If an identifier is specified but not password, the authentication type

of the data source denoted by server-name is assumed to be CLIENT.

If the CREATE SERVER statement is used to define a DB2 family instance
as a data source, DB2 may need to bind certain packages to that instance. If
a bind is required, the remote-authorization-name in the statement must have
BIND authority. The time required for the bind to complete is dependent on
data source speed and network connection speed.

If a server option is set to one value for a type of data source, and this
same option set to another value for an instance of this type, the second
value overrides the first for the instance. For example, suppose that
PASSWORD is set to “Y’ (yes, validate passwords at the data source) for a
federated system’s DB2 Universal Database for OS/390 and z/OS data
sources. Then later, this option’s default (‘N’) is used for a specific DB2
Universal Database for OS/390 and z/OS data source named SIBYL. As a
result, passwords will be validated at all of the DB2 Universal Database for
0S5/390 and z/OS data sources except SIBYL.

Examples:

Example 1: Define a DB2 for MVS/ESA 4.1 data source that is accessible
through a wrapper called DB2WRAP. Call the data source CRANDALL. In
addition, specify that:

MURROW and DROWSSAP will be the authorization ID and password
under which packages are bound at CRANDALL when this statement is
processed.

SQL Reference, Volume 2

CREATE SERVER

e CRANDALL is defined to the DB2 RDBMS as an instance called MYNODE.

* When the federated server accesses CRANDALL, it will be connected to a
database called MYDB.

¢ The authorization IDs and passwords under which CRANDALL can be
accessed are to be sent to CRANDALL in uppercase.

* MYDB and the federated database use the same collating sequence.

CREATE SERVER CRANDALL
TYPE DB2/MVS
VERSION 4.1
WRAPPER DB2WRAP
AUTHORIZATION MURROW
PASSWORD DROWSSAP
OPTIONS
(NODE 'MYNODE',
DBNAME 'MYDB',
FOLD_ID 'U',
FOLD_PW 'U"',
COLLATING_SEQUENCE 'Y')

Example 2: Define an Oracle 7.2 data source that’s accessible through a
wrapper called KLONDIKE. Call the data source CUSTOMERS. Specify that:

* CUSTOMERS is defined to the Oracle RDBMS as an instance called ABC.

Provide these statistics for the optimizer:

* The CPU for the federated server runs twice as fast as the CPU that
supports CUSTOMERS.

* The I/O devices at the federated server process data one and a half times
as fast as the I/O devices at CUSTOMERS.

CREATE SERVER CUSTOMERS

TYPE ORACLE

VERSION 7.2

WRAPPER KLONDIKE

OPTIONS
(NODE 'ABC',
CPU_RATIO '2.0',
10 RATIO '1.5')

Related concepts:
* “Distributed relational databases” in the SQL Reference, Volume 1

Related reference:
* “Server options for federated systems” in the Federated Systems Guide

Chapter 1. Statements 331

CREATE TABLE

CREATE TABLE

332

The CREATE TABLE statement defines a table. The definition must include its
name and the names and attributes of its columns. The definition may include
other attributes of the table, such as its primary key or check constraints.

To declare a global temporary table, use the DECLARE GLOBAL
TEMPORARY TABLE statement.

Invocation:

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for
the package (SQLSTATE 42509).

Authorization:

The privileges held by the authorization ID of the statement must include at
least one of the following;:

* SYSADM or DBADM authority

* CREATETAB authority on the database and USE privilege on the table
space as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the table does not exist

— CREATEIN privilege on the schema, if the schema name of the table
refers to an existing schema.

If a subtable is being defined, the authorization ID must be the same as the
definer of the root table of the table hierarchy.

To define a foreign key, the privileges held by the authorization ID of the
statement must include one of the following on the parent table:

* REFERENCES privilege on the table

* REFERENCES privilege on each column of the specified parent key
* CONTROL privilege on the table

* SYSADM or DBADM authority.

To define a materialized query table (using a fullselect) the privileges held by
the authorization ID of the statement must include at least one of the
following on each table or view identified in the fullselect:

» SELECT privilege on the table or view and ALTER privilege if REFRESH
DEFERRED or REFRESH IMMEDIATE is specified

SQL Reference, Volume 2

CREATE TABLE

¢ CONTROL privilege on the table or view
* SYSADM or DBADM authority.

To define a staging table associated with a materialized query table, the
privileges held by the authorization ID of the statement must include at least
one of the following:

* CONTROL privilege or ALTER privilege on the materialized query table,
and at least one of the following on each table or view identified in the
fullselect of the materialized query table:

— SELECT privilege and ALTER privilege on the table or view
— CONTROL privilege on the table or view
* SYSADM or DBADM authority

Syntax:

»>—CREATE—TABLE—table-name: element-Tist } @ >
F—type-namel

typed-table-options 'J
as-subquery-clause

]
staging-table-definition '—

LIKE table-namel

view-name:l |—| copy-options 'J

nickname:

DATA CAPTURE NONE
' r

»- ' >
\\ s J LDATA CAPTURE CHI\NGESJ
DIMENSIONS l_ |
ORGANIZE BY. r —l (olumn-nai)
|~(—'column-name]—)J
»- . L ‘ >
|:FEDERATED—D’| IN—tabZespace—namel—' tablespace-options '—I
NOT FEDERATE
»- ' >
) |—VALUE COMPRESSIONJ
|_ rUSING HASHING—l
PARTITIONING KEY—(—Y—col)
REPLICATED
@ L >
|—WITH RESTRICT ON DROP—I |—NOT LOGGED INITIALLV—I
I—OPTIONS—(—REMOTE_SERVER—’value !)J

I—, REMOTE_SCHEMA—'value ’—l I—, REMOTE_TABNAME—'value ’—l

element-list:

Chapter 1. Statements 333

CREATE TABLE

—(— column-definition)

unique-constraint
referential-constraint |—

check-constraint '7

typed-table-options:

i:l‘-lIERARCHY—hierarchy—name— L‘ typed-element-Tist ’J

under-clause |7

under-clause:

|—UNDER—supertable—name—INH ERIT SELECT PRIVILEGES

typed-element-list:

—(— 0ID-column-definition i)
with-options
unique-constraint i

check-constraint |—

as-subquery-clause:

} AS—(—fullselect—) DEFINITION ONLY
. |—| copy-options 'J
|_ materialized-query-table-options
o Lumn-name)

(—Yc _

copy-options:

-
COLUMN J
INCLUD NCJ |_ —l DEFAULTS
EXCLUDING:
l—COLUMN ATTRIBUTES—l
|—EXCLUDING IDENTITY
> @

COLUMN ATTRIBUTES
[]

|\INCLUDING IDENTITY

334 SQL Reference, Volume 2

materialized-query-table-options:

CREATE TABLE

|—DATA INITIALLY DEFERRED—REFRESH LDEFERRED

®
IMMEDIATE)

|—ENABLE QUERY OPTIMIZATION—l |—MAINTAINED BY SYSTEM—

>

|—DISABLE QUERY OPTIMIZATIONJ |—MAINTAINED BY USER—-

staging-table-definition:

| FOR—table-name2—PROPAGATE IMMEDIATE—————]

B

(—Y-staging-column-name——)

tablespace-options:

[1
L (1) |—LONG IN—tabZespace-name3—|
INDEX IN—tablespace-name2
column-definition:
F—column-name |
(2) |—‘ column-options ’J
data-type |—

column-options:

FNOT NULL:

(3)

—| Tob-options i
(4)

—| datalink-options i
(5)

—SCOPE—Etyped-table
typed—view—name—l

L"RIMARY KEY

references-clause }

I—CONSTRAINT—Canstraint—nameJ E UNIQUE—I

(6)

HECK— (—check-condtt ion—)—| constraint-attributes |—

—| generated-column-spec }

—INLINE LENGTH—integer-
—COMPRESS SYSTEM DEFAULT.

Notes:

1
done when the table is created.

Specifying which table space will contain a table’s index can only be

335

Chapter 1. Statements

CREATE TABLE

2 If the first column-option chosen is a generated-column-spec with a
generation-expression, then the data-type can be omitted. It will be
determined from the resulting data type of the generation-expression.

3 The lob-options clause only applies to large object types (BLOB, CLOB
and DBCLOB) and distinct types based on large object types.

4 The datalink-options clause only applies to the DATALINK type and
distinct types based on the DATALINK type.

5 The SCOPE clause only applies to the REF type.

6 IDENTITY column attributes are not supported in a database with more
than one partition.

7 INLINE LENGTH only applies to columns defined as structured types.

336 SQL Reference, Volume 2

data-type:

CREATE TABLE

F—SMALLINT

—[INTEGER
INT

—BIGINT
——FLOAT

I—(—int‘eger‘—)—|
—REAL:

PRECISTON
[1

—DOUBLE
——DECIMAL

—DEC——
—NUMERIC—
—NUM——

l—(—integer—l_—_l—)—l
,integer

CHARACTER
|—CHAR—I l—(integer)—l

VARCHAR
—I:[CHARACTER
CHAR:

—LONG VARCHAR
BLOB

(—integer—)—
VARYING—|

(—integer

(1)

——FOR BIT DATAJ

I—BINARY LARGE OBJECT—|
CLOB J
CHARACTER LARGE OBJECT
cor——
—DBCLOB
—GRAPHIC

I—(integer)—l
—VARGRAPHIC—(integer)

—LONG VARGRAPHIC

—DATE
—TIME

—TIMESTAMP

—DATALINK:

I—(—integer—)—|

—distinct-type-name
—structured-type-name

REF—(type-nameZ2)

Notes:

1 The FOR BIT DATA clause may be specified in random order with the

other column constraints that follow.

default-values:

Chapter 1. Statements 337

CREATE TABLE

I constant

datetime-special-register
CURRENT SCHEMA.

USER

NULL

cast-function—(constant)—
datetime-special-register—
CURRENT SCHEMA
USER

lob-options:
|—LOGGED— |—NOT COMPACT—
C T ¢
NOT LOGGED— COMPACT———

datalink-options:

LINKTYPE URL NO LINK CONTROL
L 1 [

|—FILE LINK CONTROL file-Tink-options
MODE DBZOPTIONS—I_I_

file-link-options:

|—.—INTEGRITY—ALL—.—READ PERMISSION—[FS

BLOCKED

ADMIN—L——I—REQUIRING TOKEN FOR UPDATE-
NOT

»-@-WRITE PERMISSION—EFS

»-@—RECOVERY NO——l—.—ON UNLINK—ERESTO
YES DELETE

generated-column-spec:

default-clause

ENERATED ALWAYI‘S AS IDENTITY.
BY DEFAULT: 1dent1'ty attributes 'J
(—generation-expression—)

identity-attributes:

338 SQL Reference, Volume 2

CREATE TABLE

1—|
START WITHJ:numeric—constant

Notes:

1—_|
—INCREMENT BY—[numerl’c—constant
NO MINVALUE
INVALUE—numeric—constant]—
NO MAXVALUE—_|
AXVALUE—numeric-constant

NO CYCLE
_|

CYCLE

CACHE—20
~ENO CACHE
CACHE—integer-constant—

NO ORDER
J:()RDER —l

1 The same clause must not be specified more than once.

references-clause:

|—REFERENCES—table-name

>—| rule-clause |—| constraint-attributes i

rule-clause:

e

|—0N DELETE NO ACTION

(—Y—column-name——)

N UPDATE NO ACTION
r° i

CASCADE
SET NUL

®
|—ON DELETE—ERESTRIC? |—ON UPDATE RESTRICTJ
L

constraint-attributes:

e

ENFORCED———
|_

|—ENABLE QUERY OPTIMIZATION—|

default-clause:

WITH
I—I_——I—DEFAULT

|—NOT ENFORCED—

|—DISABLE QUERY OPTIMIZATION—|

L‘ default-values ’J

Chapter 1. Statements 339

CREATE TABLE

unique-constraint:

B

| B] |_UNIQUE (—X—column-name) I
CONSTRAINT—constraint-name PRIMARY KEY-

referential-constraint:

| B i FOREIGN KEY—(—Ycolumn-name) >
CONSTRAINT—constraint-name

>—| references-clause i I

check-constraint:

| CHECK— (—check-condition—) >

|—CONSTRAINT—constraint-name—|

> constraint-attributes i |

OID-column-definition:

—REF IS—0ID-column-name—USER GENERATED |

with-options:

F—column-name—WITH OPTIONS—j column-options i |

Description:

System-maintained materialized query tables and user-maintained
materialized query tables are referred to by the common term materialized
query table, unless there is a need to identify each one separately.

table-name
Names the table. The name, including the implicit or explicit qualifier,
must not identify a table, view, or alias described in the catalog. The
schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT
(SQLSTATE 42939).

OF type-namel
Specifies that the columns of the table are based on the attributes of the
structured type identified by type-namel. If type-namel is specified without
a schema name, the type name is resolved by searching the schemas on
the SQL path (defined by the FUNCPATH preprocessing option for static

340 SQL Reference, Volume 2

CREATE TABLE

SQL and by the CURRENT PATH register for dynamic SQL). The type
name must be the name of an existing user-defined type (SQLSTATE
42704) and it must be an instantiable structured type (SQLSTATE 428DP)
with at least one attribute (SQLSTATE 42997).

If UNDER is not specified, an object identifier column must be specified
(refer to the OID-column-definition). This object identifier column is the
first column of the table. The object ID column is followed by columns
based on the attributes of type-namel.

HIERARCHY hierarchy-name
Names the hierarchy table associated with the table hierarchy. It is created
at the same time as the root table of the hierarchy. The data for all
subtables in the typed table hierarchy is stored in the hierarchy table. A
hierarchy table cannot be directly referenced in SQL statements. A
hierarchy-name is a table-name. The hierarchy-name, including the implicit or
explicit schema name, must not identify a table, nickname, view, or alias
described in the catalog. If the schema name is specified, it must be the
same as the schema name of the table being created (SQLSTATE 428DQ).
If this clause is omitted when defining the root table, a name is generated
by the system consisting of the name of the table being created followed
by a unique suffix such that the identifier is unique within the identifiers
of the existing tables, views, aliases, and nicknames.

UNDER supertable-name
Indicates that the table is a subtable of supertable-name. The supertable
must be an existing table (SQLSTATE 42704) and the table must be
defined using a structured type that is the immediate supertype of
type-namel (SQLSTATE 428DB). The schema name of table-name and
supertable-name must be the same (SQLSTATE 428DQ). The table identified
by supertable-name must not have any existing subtable already defined
using type-namel (SQLSTATE 42742).

The columns of the table include the object identifier column of the
supertable with its type modified to be REF(type-namel), followed by
columns based on the attributes of type-namel (remember that the type
includes the attributes of its supertype). The attribute names cannot be the
same as the OID column name (SQLSTATE 42711).

Other table options including table space, data capture, not logged
initially and partitioning key options cannot be specified. These options
are inherited from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the supertable will be
granted an equivalent privilege on the newly created subtable. The
subtable definer is considered to be the grantor of this privilege.

Chapter 1. Statements 341

CREATE TABLE

element-list
Defines the elements of a table. This includes the definition of columns
and constraints on the table.

typed-element-list
Defines the additional elements of a typed table. This includes the
additional options for the columns, the addition of an object identifier
column (root table only), and constraints on the table.

as-subquery-clause
If the table definition is based on the result of a query, the table is a
materialized query table based on the query.

column-name
Names the columns in the table. If a list of column names is specified,
it must consist of as many names as there are columns in the result
table of the fullselect. Each column-name must be unique and
unqualified. If a list of column names is not specified, the columns of
the table inherit the names of the columns of the result table of the
fullselect.

A list of column names must be specified if the result table of the
fullselect has duplicate column names of an unnamed column
(SQLSTATE 42908). An unnamed column is a column derived from a
constant, function, expression, or set operation that is not named
using the AS clause of the select list.

AS
Introduces the query that is used for the definition of the table and to
determine the data included in the table.

fullselect
Defines the query in which the table is based. The resulting column
definitions are the same as those for a view defined with the same
query.
Every select list element must have a name (use the AS clause for
expressions). The as-subquery-clause defines attributes of the
materialized query table. The option chosen also defines the contents
of the fullselect as follows.

When DEFINITION ONLY is specified, any valid fullselect that does
not reference a typed table or typed view can be specified.

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified,
the fullselect cannot include (SQLSTATE 428EC):

* references to a materialized query table, declared temporary table,
or typed table in any FROM clause

342 SQL Reference, Volume 2

CREATE TABLE

references to a view where the fullselect of the view violates any of
the listed restrictions on the fullselect of the materialized query
table

expressions that are a reference type or DATALINK type (or distinct
type based on these types)

functions that have external action
functions written in SQL

functions that depend on physical characteristics (for example,
DBPARTITIONNUM, HASHEDVALUE)

table or view references to system objects (Explain tables also
should not be specified)

expressions that are a structured type or LOB type (or a distinct
type based on a LOB type)

user-defined functions defined with either CONTAINS SQL or
READS SQL DATA

When REFRESH IMMEDIATE is specified:

the fullselect must be a subselect

the fullselect cannot include a reference to a nickname (SQLSTATE
428EC)

the subselect cannot include:

— functions that are not deterministic

— scalar fullselects

— predicates with fullselects

— special registers

a GROUP BY clause must be included in the subselect unless

REPLICATED is specified, in which case a GROUP BY clause is not
allowed.

The supported column functions are SUM, COUNT, COUNT_BIG
and GROUPING (without DISTINCT). The select list must contain a
COUNT(*) or COUNT_BIG(*) column. If the materialized query
table select list contains SUM(X), where X is a nullable argument,
the materialized query table must also have COUNT(X) in its select
list. These column functions cannot be part of any expressions.

if the FROM clause references more than one table or view, it can
only define an inner join without using the explicit INNER JOIN
syntax

all GROUP BY items must be included in the select list

Chapter 1. Statements 343

CREATE TABLE

* GROUPING SETS, CUBE and ROLLUP are supported. The GROUP
BY items and associated GROUPING column functions in the select
list must form a unique key of the result set. Thus, the following
restrictions must be satisfied:

— no grouping sets may be repeated. For example, ROLLUP(X,Y), X
is not allowed because it is equivalent to GROUPING
SETS((X,Y), (X), (X))

- if X is a nullable GROUP BY item that appears within
GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X) must
appear in the select list

— grouping on constants is not allowed
¢ a HAVING clause is not allowed
e if in a multiple partition database partition group, then either the

partitioning key must be a subset of the GROUP BY items, or
REPLICATED must be specified

* if REPLICATED is specified, the table must have a unique key

A materialized query table whose fullselect contains a GROUP BY
clause is summarizing data from the tables referenced in the fullselect.
Such a materialized query table is also known as a summary table. A
summary table is a specialized type of materialized query table.

DEFINITION ONLY

The query is used only to define the table. The table is not populated
using the results of query and the REFRESH TABLE statement cannot be
used. When the CREATE TABLE statement is completed, the table is no
longer considered a materialized query table.

The columns of the table are defined based on the definitions of the
columns that result from the fullselect. If the fullselect references a single
table in the FROM clause, select list items that are columns of that table
are defined using the column name, data type, and nullability
characteristic of the referenced table.

materialized-query-table-options

Define the refreshable options of the materialized query table attributes.

DATA INITIALLY DEFERRED
Data is not inserted into the table as part of the CREATE TABLE
statement. A REFRESH TABLE statement specifying the table-name is
used to insert data into the table.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the

344 SQL Reference, Volume 2

CREATE TABLE

REFRESH TABLE statement. The data in the table only reflects the
result of the query as a snapshot at the time the REFRESH TABLE
statement is processed. System-maintained materialized query
tables defined with this attribute do not allow INSERT, UPDATE,
or DELETE statements (SQLSTATE 42807). User-maintained
materialized query tables defined with this attribute do allow
INSERT, UPDATE, or DELETE statements.

IMMEDIATE
The changes made to the underlying tables as part of a DELETE,
INSERT, or UPDATE are cascaded to the materialized query table.
In this case, the content of the table, at any point-in-time, is the
same as if the specified subselect is processed. Materialized query
tables defined with this attribute do not allow INSERT, UPDATE,
or DELETE statements (SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization
under appropriate circumstances.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query optimization.
The table can still be queried directly.

MAINTAINED BY SYSTEM
Indicates that the data in the materialized query table is maintained
by the system. This is the default.

MAINTAINED BY USER
Indicates that the data in the materialized query table is maintained
by the user. The user is allowed to perform update, delete, or insert
operations against user-maintained materialized query tables. The
REFRESH TABLE statement, used for system-maintained materialized
query tables, cannot be invoked against user-maintained materialized
query tables. Only a REFRESH DEFERRED materialized query table
can be defined as MAINTAINED BY USER.

staging-table-definition
Defines the query supported by the staging table indirectly through an
associated materialized query table. The underlying tables of the
materialized query table are also the underlying tables for its associated
staging table. The staging table collects changes that need to be applied to
the materialized query table to synchronize it with the contents of the
underlying tables.

staging-column-name
Names the columns in the staging table. If a list of column names is
specified, it must consist of two more names than there are columns in
the materialized query table for which the staging table is defined. If

Chapter 1. Statements 345

CREATE TABLE

the materialized query table is a replicated materialized query table,
or the query defining the materialized query table does not contain a
GROUP BY clause, the list of column names must consist of three
more names than there are columns in the materialized query table for
which the staging table is defined. Each column name must be unique
and unqualified. If a list of column names is not specified, the
columns of the table inherit the names of the columns of the
associated materialized query table. The additional columns are
named GLOBALTRANSID and GLOBALTRANSTIME, and if a third
column is necessary, it is named OPERATIONTYPE.

Table 4. Extra Columns Appended in Staging Tables

Column Name Data Type Column Description
GLOBALTRANSID CHAR(8) FOR BIT DATA The global transaction ID
for each propagated row
GLOBALTRANSTIME CHAR(13) FOR BIT DATA The timestamp of the
transaction
OPERATIONTYPE SMALLINT Operation for the

propagated row, either
insert, update, or delete.

A list of column names must be specified if any of the columns of the
associated materialized query table duplicates any of the generated
column names (SQLSTATE 42711).

FOR table-name2

Specifies the materialized query table that is used for the definition of
the staging table. The name, including the implicit or explicit schema,
must identify a materialized query table that exists at the current
server defined with REFRESH DEFERRED. The fullselect of the
associated materialized query table must follow the same restrictions
and rules as a fullselect used to create a materialized query table with
the REFRESH IMMEDIATE option.

The contents of the staging table can be used to refresh the
materialized query table, by invoking the REFRESH TABLE statement,
if the contents of the staging table are consistent with the associated
materialized query table and the underlying source tables.

PROPAGATE IMMEDIATE

The changes made to the underlying tables as part of a delete, insert,
or update operation are cascaded to the staging table in the same
delete, insert, or update operation. If the staging table is not marked
inconsistent, its content, at any point-in-time, is the delta changes to
the underlying table since the last refresh materialized query table.

346 SQL Reference, Volume 2

CREATE TABLE

LIKE table-namel or view-name or nickname
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-namel), view
(view-name) or nickname (nickname). The name specified after LIKE must
identify a table, view or nickname that exists in the catalog, or a declared
temporary table. A typed table or typed view cannot be specified
(SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where 7 is the
number of columns in the identified table, view or nickname.

 If a table is identified, then the implicit definition includes the column
name, data type and nullability characteristic of each of the columns of
table-namel. If EXCLUDING COLUMN DEFAULTS is not specified, then
the column default is also included.

» If a view is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each of the result
columns of the fullselect defined in view-name.

* If a nickname is identified, then the implicit definition includes the
column name, data type, and nullability characteristic of each column
of nickname.

Column default and identity column attributes may be included or
excluded, based on the copy-attributes clauses. The implicit definition
does not include any other attributes of the identified table, view or
nickname. Thus the new table does not have any unique constraints,
foreign key constraints, triggers, or indexes. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table
has any other optional clause only if the optional clause is specified.

copy-options
These options specify whether or not to copy additional attributes of the
source result table definition (table, view or fullselect).

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name is specified and table-name identifies a base table or
declared temporary table, then INCLUDING COLUMN DEFAULTS is
the default.

EXCLUDING COLUMN DEFAULTS
Columns defaults are not copied from the source result table
definition.

This clause is the default, except when LIKE fable-name is specified
and table-name identifies a base table or declared temporary table.

Chapter 1. Statements 347

CREATE TABLE

INCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are copied from the source result table
definition, if possible. It is possible to copy the identity column
attributes, if the element of the corresponding column in the table,
view, or fullselect is the name of a table column, or the name of a
view column which directly or indirectly maps to the name of a base
table column with the identity property. In all other cases, the
columns of the new table will not get the identity property. For
example:

¢ the select-list of the fullselect includes multiple instances of an
identity column name (that is, selecting the same column more than
once)

* the select list of the fullselect includes multiple identity columns
(that is, it involves a join)

* the identity column is included in an expression in the select list

¢ the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

ORGANIZE BY DIMENSIONS (column-name,...)
Specifies a dimension for each column or group of columns used to
cluster the table data. The use of parentheses within the dimension list

specifies that a group of columns is to be treated as one dimension. The
DIMENSIONS keyword is optional.

A clustering block index is automatically maintained for each specified
dimension, and a block index, consisting of all columns used in the
clause, is maintained if none of the clustering block indexes includes them
all. The set of columns used in the ORGANIZE BY clause must follow the
rules for the CREATE INDEX statement.

Each column name specified in the ORGANIZE BY clause must be
defined for the table (SQLSTATE 42703), and a dimension cannot occur
more than once in the dimension list (SQLSTATE 42709).

Pages of the table are arranged in blocks of equal size, which is the extent
size of the tablespace, and all rows of each block contain the same
combination of dimension values.

column-definition
Defines the attributes of a column.
column-name
Names a column of the table. The name cannot be qualified, and the

same name cannot be used for more than one column of the table
(SQLSTATE 42711).

348 SQL Reference, Volume 2

CREATE TABLE

A table may have the following:
* A 4K page size with a maximum of 500 columns, where the byte
counts of the columns must not be greater than 4 005.

* An 8K page size wi